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Cellular immunotherapy for pediatric solid tumors
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CHRYSTAL U. LOUIS1,2,3 & NABIL AHMED1,2,3
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of Medicine, Houston, Texas, USA

AbstractQ2

Substantial progress has been made in the treatment of pediatric solid tumors over the past 4 decades. However, children
with metastatic and or recurrent disease continue to do poorly despite the aggressive multi-modality conventional therapies.
The increasing understanding of the tumor biology and the interaction between the tumor and the immune system over the
recent years have led to the development of novel immune-based therapies as alternative options for some of these high-risk
malignancies. The safety and anti-tumor efficacy of various tumor vaccines and tumor-antigen specific immune cells are
currently being investigated for various solid tumors. In early clinical trials, most of these cellular therapies have been well
tolerated and have shown promising clinical responses. Although substantial work is being done in this field, the available
knowledge for pediatric tumors remains limited. We review the contemporary early phase cell-based immunotherapy efforts
for pediatric solid tumors and discuss the rationale and the challenges thereof.

Key Words: cell therapy, pediatric solid tumor, T cell, vaccine

Introduction

OutcomesQ3 for the majority of childhood cancers have
improved substantially over the past 40 years. This

Q4 was achieved because of the systematic consortium
efforts largely focused on dose-intense multimodality
and multi-agent interventions as well as improve-
ments in the supportive measures needed. Despite
this progress, the prognosis for children with re-
fractory and relapsed malignancies remains dismal.
Furthermore, long-term toxicities of the intense
chemotherapy/radiation therapy regimens are now
becoming more evident with improving survival,
highlighting the need for a qualitative change in our
approach. Targeted therapies are being explored to
overcome these toxic effects and to further improve
survival. In this review, we discuss the various
cellular immunotherapeutic approaches that are
currently being investigated for some of the difficult-
to-treat pediatric solid tumors.

For targeted cellular therapy of cancer, ideal
candidate antigens are those that have high levels of
expression on malignant cells with no or very low
expression on normal cells. This would eliminate or
minimize the systemic toxicities from on-target off-
tumor effects (1). Cellular immunotherapy for

cancers can be either active or passive. Active
immunotherapy involves in vivo activation of the
innate and adaptive immune system to induce a
more sustained anti-tumor response. Autologous
dendritic cells (DCs) loaded with tumor antigens ex
vivo are most commonly used as antigen presenting
cells (APCs). They evoke active specific anti-tumor
responses by the host immune system. DCs are the
most efficient APCs because they are able to present
and cross-present antigenic peptides by both major
histocompatibility complex Q5(MHC) I and MHC II
pathways, thereby stimulating both CD4þ and
CD8þ lymphocytes (2). Although tumor vaccines
have been largely well tolerated and shown encour-
aging results in early clinical trials, these studies have
also highlighted some of the limitations of DC vac-
cines such as low frequency of antigen-specific T
cells after vaccination (3). Furthermore, although the
use of tumor vaccines for various adult malignancies
has been investigated extensively over the past
decade, the experience in the pediatric population
has been limited.

For passive immunotherapy, immune cells such as
tumor infiltrating lymphocytes (TILs), cytotoxic T
lymphocytes (CTLs), natural killer cells (NK cells)
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and natural killer T cells (NKTs) can be generated ex
vivo, expanded and infused in to the patient. Autol-
ogous or donor-derived T cells, NK and NKT cells
can also be genetically engineered to express chimeric
antigen receptors (CARs) that can specifically recog-
nize and kill target antigenepositive tumor cells (4).
CAR molecules consist of an extracellular antigen
binding domain traditionally derived from the heavy
and light chain variable regions of a monoclonal
antibody and an intracellular signaling domain
derived from the CD3-z chain. Co-stimulatory mol-
ecules such as CD28, 4-1BB or OX-40 can be
incorporated to the signaling domain to enhance their
performance (5,6). Hence, CAR-redirected T cells
combine the specificity of monoclonal antibodies with
the cytolytic activity, potential for expansion and
persistence ability of T cells. They induce tumor cell
killing in a MHC-independent manner, thereby
overcoming some of the mechanisms tumors employ
to evade the host’s immune system, such as down-
regulation of MHC class I molecules or components
of the antigen processing machinery.

Tumors of the central nervous system

Conventional therapies using debulking surgery, ra-
diation and chemotherapy have not been effective in
preventing tumor progression in high-grade glioma,
as evidenced by the poor survival rates (7,8). Brain
tumors in general are significantly less responsive to
systemic chemotherapy due, in part, to the presence
of a bloodebrain barrier that often limits the drug
penetration into the central nervous system. Treat-
ment failures are also often secondary to the devel-
opment of primary or acquired drug resistance
(9,10). However, although improvements have been
seen in some brain tumors such medulloblastoma
(MB; 60e80% overall survival at 5 years), treatment-
associated morbidities continue to be substantial
(11). Targeted immunotherapies have the potential
to improve such outcomes while minimizing the
treatment-related toxicities affecting the normal
developing brain in children.

Cellular immune responses in glioma patients
have long been known to be deficient as shown by
lack of T-cell proliferation in response to phytohe-
magglutinin (12,13). Other factors, such as the
down-regulation of MHC class I and class II
expression, along with lack of co-stimulatory mole-
cules on glioma cells (14,15), secretion of TGFQ6 b and
inhibitory prostaglandins by tumor cells (16e19) and
infiltration of the tumor with regulatory T cells
(Tregs) (20,21), have been implicated in glioma-
induced immunosuppression. These represent major
hurdles to developing effective immunotherapeutic

approaches for glioma patients. The mechanisms of
immune-evasion in MB are not yet clearly under-
stood (22,23). Although it has been shown that the
MHC class I antigen processing machinery compo-
nents are down-regulated in MB cells, whether this
contributes to the failure of immune surveillance is
not well delineated. Despite the altered MHC
expression, most brain tumors preserve some degree
of antigen presentation to CTLs (24).

Most of the progress made in brain tumor
immunotherapy can be attributed to the use of vac-
cines to induce an active cellular immunity against
glioma. To generate glioma-specific DCs, the pe-
ripheral blood monocyteederived DCs are pulsed ex
vivo with tumor cell antigens in the form of tumor
lysates, acid-eluted membrane peptides or by fusing
the DCs with tumor cells (25e29). Single anti-
genebased vaccines have been shown to result in
target antigenenegative tumor cell variants, a phe-
nomenon seen less frequently with whole tumor
cellederived vaccines (30). Most investigators have
used an intradermal approach to inject the DC vac-
cines, although the subcutaneous and the intrave-
nous approaches have been tried as well. From either
of these injection sites, DCs then migrate to the
draining lymph nodes to activate CTLs (31,32).

Results of multiple phase I/II clinical trials have
now established the feasibility and safety of DC vac-
cines for brain tumors. Some of these studies in adults
with malignant glioma have demonstrated objective
clinical responses (29,33e35). Although research
groups have administered DC vaccines according to
different schedules, the total duration of vaccine
therapy needed to maintain an anti-tumor immune
response remains unknown. In recent years, in-
vestigators have pursued the use of adjuvant DC
vaccines for children with high-grade glioma and
other aggressive/recurrent brain tumors (25,36,37).
In a clinical trial of 45 children with malignant brain
tumors including high-grade glioma (HGG; n ¼ 33),
MB/primitive neuro-ectodermal tumor (n ¼ 5),
ependymoma (n ¼ 4) and atypical rhabdoid teratoid
tumor (ATRT; n ¼ 3), tumor lysateeloaded DC
vaccines were well tolerated with no severe adverse
events, and more favorable responses were noted in
patients with HGG and ATRT than with those with
MB/primitive neuro-ectodermal tumor (36). At a
median follow-up of 35.7 months, 7 patients with
HGG were alive (median overall survival 13.5
months; range 1.4e85.6 months), and 2 patients
with ATRT were alive at 34.6 and 52.6 months of
follow-up. Another prospective cohort comparison
trial (HGG-IMMUNO Q7) in 56 children and adults
(age 7e77 years) with relapsed glioblastoma repor-
ted improved progression-free survival and overall
survival after vaccination with autologous, mature,
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whole tumor cell lysateeloaded DCs as an adjuvant
therapy after re-operation. Median overall survival
from the re-operation was 9.6 months with a 2-year
survival of 14.8%. This study also showed that total
resection and a younger age (<35 years) to be pre-
dictors of better outcome (25). The addition of an
adjuvant can potentially boost the immune response
to a weakly immunogenic tumoreassociated antigen
(TAA). Adjuvants have minimal long-lasting immune
effects of their own, but by augmenting the activity of
DCs and lymphocytes, they can help sustain the
specific immune response to the antigen. This may
reduce the number of vaccine doses required to ach-
ieve the desired anti-tumor response. A single insti-
tution pilot study is currently underway to assess the
safety and efficacy of vaccinations with HLA-A2Q8 -
restricted glioma antigen-peptides in combination
with Poly-ICLC (an immunostimulant that consists
of carboxymethylcellulose, polyinosinic-polycytidylic
acid and poly-L-lysine double-stranded RNA) and is
enrolling children with newly diagnosed diffuse
intrinsic pontine glioma (DIPG), HGG and recurrent
unresectable low-grade glioma (Clinicaltrials.gov
registry number NCT01130077). A phase I study
conducted in adolescents and adults with HGG in
collaboration with the HGG-IMMUNO group is
using another immune response modifier (imiqui-
mod) to investigate the anti-tumor immunity after
intradermal injection of autologous DC vaccine after
surgical resection (Clinicaltrials.gov registry number
NCT01808820).

Whole tumor cellederived DC vaccines contain
tumor-specific as well as non-specific antigens and
carry the risk of inducing immune response against
the normal host tissue, although none has been re-
ported in glioma trials so far. Efficacy of tumor
antigenespecific vaccine is also being investigated.
Rindopepimut is a peptide vaccine that evokes
EGFRvIII (epidermal growth factor receptor variant
III)-specific humoral as well as cellular immune
response. Mutated EGFRvIII is a transmembrane
glycoprotein with constitutive tyrosine kinase activity
that plays an important role in tumorigenesis and
development of chemoresistance (38,39). Phase I/II
trials using rindopepimut in adults with glioma have
demonstrated improved progression-free survival
and overall survival with minimal side effects
(40,41), and it is currently in a randomized phase III
trial for adults with newly diagnosed glioblastoma
(Clinicaltrials.gov registry number NCT01480479).
EGFRvIII is a validated therapeutic target in pedi-
atric HGG and DIPG (42e44). However, the safety
and efficacy of EGFRvIII-specific vaccine therapy in
children has yet to be studied. Another potential
limitation of DC vaccines is the induction of toler-
ance after repeated, prolonged exposure to the

antigen. The majority of the current vaccine trials use
mature DCs because immature DCs are now known
to be suboptimal for inducing immune response and
are thought to induce tolerance (28,45).

Cellular immunotherapeutics for brain tumors are
at earlier stages of development (46,47) and most of
the available knowledge is based on pre-clinical data,
but a number of phase I/II clinical trials are underway
(Clinicaltrials.gov registry numbers NCT01109095,
NCT01082926, NCT01454596). HER2 (human
epidermal growth factor 2, also known as ErbB-2) is a
transmembrane glycoprotein with tyrosine kinase
activity and plays an important role in regulation of
cell growth and differentiation (48). HER2 is
expressed in up to 80% of glioblastoma (49) and
medulloblastoma (50) but not on normal post-natal
human brain (51). In a number of malignancies
including glioma and medulloblastoma, over-
expression of HER2 has been associated with poorer
prognosis (50,52). The monoclonal antibody (MAb)
targeting HER2, trastuzumab, has been used effec-
tively to treat tumors with gene amplification and
over-expression of HER2, such as breast and ovarian
carcinoma, but efficacy in over-expressing but
nonegene amplified tumors, such as osteosarcoma,
has been limited (53). Unlike trastuzumab, however, T
cells modified to express HER2-specific CARs can
efficiently recognize and kill tumor cells with even
modest levels of HER2 expression. This has been
shown in pre-clinical models of medulloblastoma,
glioma and osteosarcoma in which HER2-specific
CAR T cells induced regression of the experimental
tumors and improved survival compared with the
control mice treated with non-transduced T cells
(54e56). In HER2 transgenic mice that expressed
human HER2 as a self-antigen in brain and mammary
tissues, CD8þ HER2-specific T cells infused in
combination with lymphoablation and recombinant
human interleukin (rhIL)-2 induced tumor regression
with no evidence of autoimmunity, highlighting its Q9

potential as a safe and effective cancer therapy (57). In
addition, adoptively transferred HER2 CAR T cells
have also been shown to target primary glioblastoma
stem cells (CD133þ) and induce regression/resolution
of autologous experimental tumors (55). The safety
and efficacy of HER2-specific T cells is currently being
investigated in a phase I trial using CMV-specific
CTLs modified to express HER2-specific CAR
(NCT01109095). This study also aims to simulta-
neously target the CMV protein pp65, expressed in
>65% of glioblastoma samples studied (58,59). An
added advantage of co-targeting CMV could be the
survival signal provided by CMV-specific helper T
cells in vivo (60). Another phase I study of T-cell
therapy for HER2 positive malignancies employs a
similar strategy, modifying the EBV-specific CTLs to

FLA 5.2.0 DTD � JCYT329_proof � 5 July 2014 � 8:25 pm � ce

Cellular therapies for pediatric solid tumors 3

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

http://Clinicaltrials.gov
http://Clinicaltrials.gov
mailto:end body part
http://Clinicaltrials.gov
mailto:end body part
http://Clinicaltrials.gov


express CARmolecules targetingHER2 (Clinicaltrials.
gov registry numberNCT00889954).This study is also
designed to test whether rendering the adoptively
transferred T cells resistant to the inhibitory effects
to TGF-bQ10 by transducing the T cells with the TGF-b
dominant negative receptor would improve their
expansion and anti-tumor effects. Other surface-
expressed glioma-specific antigens are also being
targeted using ex vivomodified T cells. IL13Ra2 is a
cell surface receptor with high affinity for IL13 and is
differentially expressed on >80% of high-grade gli-
omas (61,62). IL13Ra2 has a short intracellular
domain but lacks a signaling domain. However,
recent studies in pancreatic and ovarian cancer cell
lines have shown that IL13Ra2 may have a role in
regulation of invasion and adhesion properties of
cancer cells (63,64). IL13Ra2 has been safely tar-
geted using recombinant cytotoxin composed of
human IL-13 and a truncated form of Pseudomonas
exotoxin A (IL13-PE38QQR; Cintredekin besudo-
tox) with encouraging results in adult HGG and the
feasibility of convection-enhanced delivery of IL13-
PE38QQR in pediatric patients with progressive
DIPG and HGG is now being tested (Clinicaltrials.
gov registry number NCT00880061). IL13-zeta-
kine is an IL13Ra2-specific CAR molecule that uses
IL13 as an antigen recognition domain. IL13-zeta-
kine redirected T cells have been shown to specif-
ically target and kill differentiated high-grade glioma
cells as well as glioma stem-like cancer-initiating
cells in vitro and in animal models (65,66). A phase I
study of CD8þ T cells modified to express IL13-
zetakine in combination with IL-2, for refractory/
recurrent glioma in adult patients is now ongoing
(Clinicaltrials.gov registry number NCT01082926).
Although IL13Ra2 has been shown to be over-
expressed in pediatric brain tumors (68e70), no cell
therapy trials targeting IL13Ra2 are currently
enrolling pediatric patients.

Other potential targets for adoptive T-cell therapy
of pediatric brain tumors include EGFRvIII and
erythropoietin-producinghepatocellular carcinomaA2
(EphA2) (43,68,69). Both EGFRvIII and EphA2 are
known to be expressed in pediatric gliomas, and CAR-
modified T cells have been successfully generated
against both these targets (70) (Clinicaltrials.gov reg-
istry number NCT01454596). Overall, results of the
preclinical and early clinical studies of adoptive transfer
of CAR-modified T cells for brain tumors have been
fairly promising. However, factors such as the hetero-
geneous nature of these tumors and the inherent risk of
tumor escape that leads to progression or recurrence
make targeted therapy with T cells extremely chal-
lenging. In a pre-clinical study comparing bispecific
T cell products simultaneously targeting HER2 and
IL13Ra2 in glioblastoma to T cells targeting either

HER2 or IL13Ra2 only, bispecific CAR T-cell prod-
ucts were found to improve tumor control and confer a
significant survival advantage on the treated animals.
This is likely because of the enhanced T-cell activation
and to offsetting antigen escape (71). Combinational
targeting of two ormore tumor-restricted antigens and/
or tumor and its microenvironment using T cells co-
expressing distinct CARs or a bispecific CAR that
consists of two antigen recognition domains in tandem
(tanCAR) Q11to achieve improved tumor control are po-
tential strategies that could be incorporated in future
studies (71,72).

Neuroblastoma

Immunotherapy is an attractive option for patients
with high-risk neuroblastoma because standard
treatment with dose-intensive chemotherapy, sur-
gery, radiation and biological maintenance therapy is
associated with poor survival or the potential for
significant long-term sequelae in those cured of dis-
ease. During the past 2 decades, researchers have
been working on developing more targeted immu-
notherapeutic modalities for patients with neuro-
blastoma with the intent of improving outcome.
Although the chimeric monoclonal antibody (MAb)
ch14.18, targeting ganglioside GD2, has completed
phase III trial within Children’s Oncology Group,
cellular therapies are currently being developed and
tested in phase I/II trials. Neuroblastoma-specific
tumor associated antigens targeted using immuno-
therapy, in clinical and pre-clinical testing, include
mainly the disialoganglioside GD2, L1 cell adhesion
molecule (L1-CAM), B7-H3 and O-acetyl GD2
(73e79). In a randomized phase III study of MAb
targeting GD2, when compared with standard
maintenance therapy using isotretinoin alone, the
addition of ch14.18, IL-2 and GM-CSF Q12was asso-
ciated with an improvement in both 2-year event-free
and overall survival (46% versus 66% and 75%
versus 86%, respectively) (80).

Developing an effective vaccine for neuroblas-
toma has been a considerable challenge due to both
biological disease heterogeneity and targetable anti-
genic expression. This biological diversity is exem-
plified by the fact that some lesions undergo
spontaneous regression, whereas others are highly
metastatic and minimally responsive to intensive
therapy. Additionally, down-regulation of MHC, co-
stimulatory molecules and TAAs by neuroblastoma
cells may limit the effectiveness of any tumor-specific
T cell immune response induced by the vaccine (81).
Despite these obstacles, a number of studies have
been reported in which tumor responses, including
sustained complete remissions, have been observed.
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To tackle the issue of heterogeneity between and
within neuroblastoma tumor samples, most tumor
vaccines have been composed of cellular extracts or
whole cell products that have the advantage of
allowing multiple tumor antigens to be presented
(82e85).

Whole cell vaccines are also amenable to genetic-
modification to enhance anti-tumor immune re-
sponses; therefore, the investigators are now testing
an allogeneic tumor cell vaccine modified to secrete
both IL-2 and a T-cell recruiting chemokine called
lymphotactin (86). When used alone in patients with
relapsed or refractory neuroblastoma, subcutaneous
injection of the tumor vaccine led to increased local
infiltration of CD4þ and CD8þ T cells, eosinophils
and Langerhan cells. Increased NK cells and
immunoglobulin G antibodies to the vaccine cell line
were also detected within the peripheral blood. Of the
28 patients treated on study, there were 4 complete
responses (2 sustained >4 years after vaccination), 1
very good partial response, 1 partial response and 5
patients with stable disease (81,86,87). Currently
investigators are evaluating whether the addition of a
second, unmodified cell line expressing a distinct set
of TAA in either the setting of minimal residual
disease or in combination with metronomic chemo-
therapy will increase the breadth of the resulting
immune response and therefore overall anti-tumor
response in an ongoing phase I/II study of allogeneic
tumor cell vaccination with oral metronomic
Cytoxan that is currently recruiting patients with
recurrent/refractory neuroblastoma (Clinicaltrials.
gov registry number NCT01192555). Safety and ef-
ficacy of a bivalent vaccine containing two neuro-
blastoma-associated antigens, GD2L and GD3L, in
combination with the adjuvant OPT-821 is currently
being investigated in patients with relapsed high-risk
neuroblastoma in second or subsequent remission
(Clinicaltrials.gov registry number NCT00911560).

Adoptive cellular therapies for neuroblastoma
have been more difficult to bring to the clinic
compared with monoclonal antibodies or vaccines
because of the technical, monetary and regulatory
demands required for manufacture and administra-
tion. Nonetheless, clear potential advantages exist in
preparing cellular products in an ex vivo environment
free of immunosuppressive influences of established
tumor. At this time, there are a limited number of
studies testing the safety, immune responses and
anti-tumor effects of adoptive cellular transfer with
either NKs or genetically modified T cells. However,
recent publications detailing successful clinical out-
comes using T cells modified with CARs targeting
tumor associated antigens in both adult and pediatric
cancers (88e90) should lead to a further increase in
phase I and II testing.

In the first study evaluating CAR T cells for pa-
tients with neuroblastoma, administration of CE7R
CAR-expressing CD8þ clones targeting CD171 (L1,
also known as L1CAM, is a transmembrane protein;
it is a neuronal cell adhesionmolecule belonging to L1
protein family) in patients with recurrent/refractory
disease was found to be safe with no severe toxicities
observed, and 1 of 6 patients had a partial, but
unsustained, clinical response (77). Another neuro-
blastoma-associated antigen, GD2, has been suc-
cessfully targeted usingCARmodifiedT cells, and the
long-term experience after the adoptive transfer of
first-generation GD2-specific CAR T cells has been
published. After infusion of more than 40 products in
19 patients, and with a median follow-up more than 5
years, the only treatment-related adverse events noted
were low-grade fever and mild to moderate pain at
known sites of disease in 3 patients. None of the
subjects developed neurologic pain or dysfunction
associated with GD2-MAb infusion (60,70,89).
Clinically, of 11 patients who had active disease at the
time of GD2T cell infusion, there was a 45% response
rate (complete, partial and stable disease). Three of 11
achieved complete remission, which was sustained for
more than 5 years in two patients (personal commu-
nication with Dr. Louis). Q13Immunologically, detection
of GD2-specific CAR T cells beyond 6 weeks in pa-
tients with disease was associated with superior clin-
ical outcome, and duration of persistence within the
entire cohort was highly concordant with the per-
centage of CD4þ cells and central memory cells
within the infused T-cell product (89). Investigators
are now attempting to determine whether the T cells
modified to express third-generation CARs consisting
of CD28 and OX40 co-stimulatory domains will
persist longer in vivo after adoptive transfer and hence
have better therapeutic efficacy (Clinicaltrials.gov
registry number NCT01822652). As the clinical use
of second- and third-generation CARs has been
associated with significant morbidity from cytokine
storm and cytokine release syndrome, many groups
are investigating ways to modify the T-cell product to
allow for rapid cell death in the case of severe treat-
ment related toxicities (91e93). For example, in the
event of unwanted side effects from increased expan-
sion of CAR T cells on NCT01822652, these T cells
are also modified with inducible iCaspase 9 suicide
gene that can be activated in vivo with the drug
AP1903 that, upon activation, leads to programmed
cell death (88,94). Other strategies that have been
investigated to improve the safety of adoptive cell
therapy, such as genetic engineering of donor lym-
phocytes with herpes simplex virus thymidine kinase
(HSV-TK) Q14and transduction of T cells with human
CD20, are not currently incorporated in any of the
ongoing clinical trials for pediatric solid tumors
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(95e97). A pilot study is testing the safety and feasi-
bility of adoptive immunotherapy with donor-derived,
multi-virus specific CTLs expressing GD2-specific
CAR in children with refractory/relapsed neuro-
blastoma who undergo allogeneic hematopoietic stem
cell transplant (Clinicaltrials.gov registry number
NCT01460901). This study aims to compare the
frequency and expansion of allogeneic, tumor redir-
ected, multi-virus cytotoxic T-cells to that of identi-
cally transduced, autologous EBV-specific T-cells
infused in previous studies (60,98).

Pediatric sarcomas

Sarcomas refer to the tumors derived from mesen-
chymal tissues, consisting of a wide range of tissue
origins (99e101). Although the 5-year survival rates
for pediatric sarcomas range from 60 to 70% with the
currently available multimodality therapy, prognosis
for children with recurrent or refractory sarcoma is
particularly poor, ranging from 10 to 30%. What was
once an increasing survival rate has plateaued
(99,100,102).With the improvedunderstandingof the
interactions between the immune system and sar-
comas (103), novel targeted therapies for childhood
sarcomas are being developed. This section of the re-
view seeks to highlight the cellular therapeutic ap-
proaches being investigated for pediatric sarcomas,
specificallyEwing’s sarcoma family of tumors (ESFT),
rhabdomyosarcoma (RMS), osteosarcoma and syno-
vial sarcoma.

Tumor vaccines are being investigated for various
sarcomas; the most common agents tested are
autologous tumor lysate (53) in conjunction with
immunomodulation, DC vaccines pulsed with tumor
lysate/peptides and peptide vaccines. The majority of
the pediatric studies are small pilot studies, currently
in phase I, with a limited number of patients
enrolled. In an early study of tumor vaccine for pe-
diatric sarcomas, peptide vaccination in combination
with rhIL-2 infusion was demonstrated to be safe in
patients with significant immunosuppression and
bulky disease, but there was no notable clinical
benefit (104). This could be due in part to the low
immunogenicity of sarcoma antigens resulting in
induction of a small number of antigen-specific T
cells in vivo and, hence, an inadequate anti-tumor
effect in the setting of large disease burden. A pilot
study of consolidative immunotherapy was con-
ducted in pediatric patients with high-risk sarcomas
(n ¼ 52) including metastatic or recurrent ESFT
with t(11:22) type 1 or 2 translocation and alveolar
RMS [PAX3:FKHR fusion; t(2:13) translocation]
(105). For the 30 patients who received immuno-
therapy, the 5-year overall survival was 43% with

tolerable toxicity profile (1 patient developed grade 4
thrombocytopenia and 3 patients developed grade 3
neutropenia). After completion of the standard
multimodal therapy, all 30 patients received influ-
enza vaccine, similar doses of autologous T cells and
DCs pulsed with appropriate tumor-derived break-
point peptides as well as the control HPV16E7
peptide. Patients were stratified into three cohorts;
cohorts 1 and 2 received moderate and low dose
rhIL-2, respectively. Patients in cohort 3 did not
receive rhIL-2. Influenza vaccine was used to deter-
mine whether the profoundly lymphopenic patients
could respond to the vaccines; all patients showed
influenza-specific immunity within 6 months of
completing the cytoreductive therapy. However,
measurable immune response to the vaccinating
peptide was observed in 39% (9 of 23) of the pa-
tients. HLA-A2 binding HPV16-derived peptide E7
was used as a control to assess the vaccine-induced
immune response because the breakpoint peptides
used in the study do not bind to all HLA alleles. Only
25% (3 of 12) of HLA-A2þ patients on the study
generated immune response to E7, indicating that
the low immune response rate observed was likely
secondary to poor immunogenicity of the peptides in
addition to the inadequate HLA binding. In another
autologous DC vaccine study conducted in patients
with refractory malignant solid tumors, patients
received DC pulsed with tumor lysate (n ¼ 3) or
synthetic peptides (n ¼ 2) against fusion proteins
SYT-SSX2 or EWS-FLI-1, common in synovial
sarcoma and ESFT, respectively (106). Of the five
patients enrolled, one with Ewing’s sarcoma showed
a complete response and has been maintaining
remission at 77 months of follow-up (106). Two
patients exhibited stable disease for 1 month and 10
months before ultimately progressing (106).

Several other peptide vaccines have been and are
currently being tested in pediatric patients with sar-
coma.Anongoing randomizedphase II trial is studying
the efficacy of a trivalent vaccine against the N-glyco-
sylated gangliosides GM2, GD2 and GD3 in patients
aged 16 years or older with metastatic sarcoma. In this
study, patients in remission are randomized to receive
either the vaccine with the adjuvant OPT-821 or the
adjuvant alone to assess the ability of the vaccine to
elicit a sustained immune response against the earlier-
mentioned antigens and prevent tumor recurrence
(Clinicaltrials.gov registry number NCT01141491).
Another phase I/II non-randomized trial investigating
the efficacy of tumor lysate/KLH Q15pulsedDC vaccine in
combination with rhIL-7, administered soon after
completion of chemotherapy in pediatric patients with
Ewing’s sarcoma,RMSorneuroblastoma, has recently
been completed (Clinicaltrials.gov registry number
NCT00923351). An autologous cancer testes antigen
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(CTA; MAGE-A1, MAGE-A3 and NY-ESO-1)-
specific DC vaccine in combination with the hypo-
methylating agent decitabine is being investigated
in pediatric patients with relapsed sarcomas and
neuroblastoma (Clinicaltrials.gov registry number
NCT01241162). CTAs are attractive targets for
cellular immunotherapy because these antigens have
been identified as being restricted to germline tissue
expression, placental trophoblasts and a range of can-
cers including sarcomas and other pediatric solid
tumors (53). Most of the ongoing immunotherapy
trials target HLAA*02.01 associated epitopes because
class I HLA type A*02.01 is relatively common and
A*02.01 epitopes have been identified for some of the
commonly expressed CTAs (53). Most of the knowl-
edge regarding CTAs has been derived from studies
conducted in synovial sarcoma, the majority of which
express the CTA NY-ESO-1 (107). Of the larger sar-
coma subtypes, osteosarcoma is known to express
multiple cancer-testis antigens.CTAsare also a target of
interest in adoptive cell therapy trials. Adoptive transfer
of autologous T cells transduced with a T-cell receptor
(TCR) directed against NY-ESO-1 after lymphode-
pletion with fludarabine and cyclophosphamide has
been shown tobe safe in adult patients (HLA-A2þ)with
NY-ESO-1-positivemetastaticmelanoma (n¼ 11) and
synovial sarcoma (n¼ 6). TCR-transduced T cells plus
IL-2 induced objective clinical responses in four pa-
tients with synovial sarcoma and five patients with
metastatic melanoma (108). Effects of adoptively
transferred autologous TCR-transduced T cells tar-
geting NY-ESO-1 following lymphodepletion with
denileukin diftitox, fludarabine and cyclophosphamide
is being investigated in a multi-institutional phase I trial
in HLA-A2þ patients with metastatic or recurrent sy-
novial sarcoma (NCT01343043).

HER2 is another tumor-restricted antigen that is of
particular interest for adoptive cell therapy of osteo-
sarcoma. HER2 has been demonstrated to be over-
expressed in a majority of the osteosarcomas and has
beencorrelatedwithpoor survival (56,109,110).Taken
together, these findings further support HER2 as a
therapeutic target in osteosarcoma. A phase II trial was
conducted by Children’s Oncology Group evaluating
the feasibility and safety of humanized monoclonal
antibody trastuzumab (Herceptin) and chemotherapy
in patients with HER2-overexpressing metastatic os-
teosarcoma (Clinicaltrials.gov registry number
NCT00023998). Results of the study indicated that
this treatment regimen was well tolerated, but after
completion of the trial, its therapeutic benefit remains
uncertain (53). However, genetically modified T cells
redirected toHER2 have been demonstrated to induce
tumor regression in both local and metastatic murine
models of osteosarcoma (56). Furthermore, HER2-
specific CAR T cells were also capable of eliminating

tumor-initiating cells, both in vitro and in vivo, in a
murinemodel of humanosteosarcoma (110). A phase I
clinical trial of autologous-HER2 CAR expressing
T cells is currently underway in pediatric and adult
patients with advanced HER2-positive sarcoma
(Clinicaltrials.gov registry number NCT00902044).
This study is designed to infuse T cells at increasing
dose levels with the pre-determined interval between
patients and allows for additional doses of T cells if the
patient has stable disease or reduction in the tumor size,
with the intent of evaluating the safety and efficacy of
the HER2-specific T cells.

Nasopharyngeal carcinoma

Nasopharyngeal carcinoma (NPC) is a rare tumor
with poor prognosis for those with a local-regional
bulky or metastatic disease at diagnosis (111). NPC
arises from the epithelial cells of the nasopharynx,
and almost all cases of pediatric disease are World
Health Organization Type III (undifferentiated) tu-
mors associated with Epstein-Barr virus (EBV)
(111,112). This allows for an alternative therapeutic
approach using EBV antigens as immunotherapeutic
targets for cell-based therapy. Polyclonal autologous
EBV-specific CTLs have shown promising results in
the treatment of relapsed EBV-positive NPC with
objective clinical responses seen more often in pa-
tients with low disease burden (113e115). In a
cohort of 23 patients with recurrent/refractory NPC
(12 of 23 patients aged <20 years at infusion), 62%
(5 of 8) of the patients treated in their second or
subsequent remission remained disease-free at a
follow-up of 17 to 75 months; of those with active
disease at infusion, 48.7% (7 of 15) had either a
complete or partial response (116). No significant or
dose-limiting toxicities were observed in either group
(116). However, as seen with many other solid tumor
studies, there was a lack of in vivo CTL expansion
seen in NPC patients after adoptive transfer of EBV-
specific CTL. With a hypothesis that the lack of
expansion may be causing the limited anti-tumor
activity in those with bulky disease, investigators
have studied two methods to overcome this issue:
the use of CD45 MAbs before the T-cell infusion as
an alternative to lymphodepleting chemotherapy
and the use of re-induction chemotherapy to
decrease the tumor burden before adoptive transfer.
Administration of CD45 MAbs led to an increase in
the expansion and persistence of adoptively trans-
ferred EBV-specific CTL. It was also associated
with clinical benefits including a complete response
and prolonged stable disease in patients with
increased expansion and persistence of infused
CTLs (117). The use of re-induction chemotherapy
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Table I. Current vaccine trials for pediatric solid tumors.

Immunotherapy approach Target Disease(s) Status NCT no. Trial site/sponsor

Vaccination with HLA-A2
restricted glioma associated
antigen-peptides in conjunction
with Poly-ICLCa

N/A Newly diagnosed pediatric pontine glioma
Newly diagnosed/recurrent pediatric high grade
glioma
Recurrent pediatric low grade glioma

Pilot study; recruiting NCT01130077 Children’s Hospital of Pittsburgh

Autologous DC vaccine Tumor lysate HGG Phase I; recruiting NCT01808820 University of Miami Sylvester
Comprehensive Cancer Center

DC vaccine with in situ maturation Tumor lysate HGG Phase I; recruiting NCT01902771 University of Miami Sylvester
Comprehensive Cancer Center

Allogeneic tumor cell vaccine with
oral metronomic cytoxan

N/A Neuroblastoma Phase 1& 2; ongoing NCT01192555 Baylor College of Medicine

Bivalent vaccine with the
immunological
adjuvant OPT-821

GD2L and
GD3L

Neuroblastoma Phase 1 and 2; recruiting NCT00911560 Memorial Sloan-Kettering
Cancer Center

Trivalent ganglioside vaccine, in
combination with OPT-821a

GM2, GD2
and GD3

Sarcoma Phase 2; ongoing NCT01141491 MabVax Therapeutics, Inc

Autologous DC vaccine with or
without adjuvant

Cancer testes
antigen

High-risk neuroblastoma
Ewing’s sarcoma
Osteogenic sarcoma
Rhabdomyosarcoma
Synovial sarcoma

Phase1; recruiting NCT01241162 University of Louisville

Autologous DC vaccine with
gemcitabine

Tumor lysate Refractory bone and soft tissue sarcoma Phase I; recruiting NCT01803152 University of Miami Sylvester
Comprehensive Cancer Center

Autologous DC vaccine Tumor lysate High-risk neuroblastoma
Sarcoma
Neuroectodermal tumors

Phase 1& 2; ongoing NCT00923351 National Cancer Institute

aPoly-ICLC and OPT-821 are immunostimulants.
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Table II. Current adoptive cell therapy for pediatric solid tumors.

Immunotherapy approach Target Disease(s) Status NCT no. Trial site/sponsor

CMV-specific CTLs expressing CAR HER2 Glioblastoma Phase 1; recruiting NCT01109095 Baylor College of Medicine
TGFb-resistant EBV-specific CTLs
modified to express CAR

HER2 HER2 positive malignancies Phase 1; recruiting NCT00889954 Baylor College of Medicine

Third-generation CAR T cells with
iCaspase Suicide Safety Switch

GD2 Neuroblastoma Phase 1; recruiting NCT01822652 Baylor College of Medicine

Donor-derived, multi-virus specific CTLs
expressing CAR infused in the post-
allogeneic transplant period

GD2 Neuroblastoma Phase I; recruiting NCT01460901 Children’s Mercy Hospital Kansas City

Genetically engineered T cells in HLA-
A2þ patients

NY-ESO-1 Synovial Sarcoma Phase 1; recruiting NCT01343043 National Cancer Institute (National
Cancer Institute)/Adaptimmune

CAR modified T cells HER2 Advanced sarcoma Phase 1; recruiting NCT00902044 Baylor College of Medicine
VZV-specific T cells modified with
iCaspase suicide gene and CAR
(iC9-GD2-CAR-VZV-CTLs)

GD2 Sarcoma Phase 1; not yet
recruiting

NCT01953900 Baylor College of Medicine

Autologous EBV-specific CTLs after re-
induction chemotherapy

LMP-1 and
LMP-2

Nasopharyngeal carcinoma Phase 1; recruiting NCT00953420 Baylor College of Medicine

Autologous EBV-specific CTLs LMP-1 and
LMP-2

Nasopharyngeal carcinoma Phase 1; active NCT00516087 Baylor College of Medicine

Most closely HLA-matched EBV-specific
CTLs

LMP-1 and
LMP-2

Nasopharyngeal Carcinoma
Leiomyosarcoma

Phase 1; recruiting NCT01447056 Baylor College of Medicine

NK cells from haploidentical donor after
conditioning chemotherapy

NA ESFT rhabdomyosarcoma Phase 1; recruiting NCT00640796 St. Jude Children’s Research Hospital

Allogeneic NK cells and standard
chemotherapy with or without anti-
GD2 antibody (HU14.18K322A)

NA Neuroblastoma Recruiting NCT01576692 St. Jude Children’s Research Hospital

Allogeneic NK cell infusion from
haploidentical donor in the immediate
post-transplant period

NA High-risk neuroblastoma Phase 2; recruiting NCT01857934 St. Jude Children’s Research Hospital

NK cells from haploidentical donor post-
transplant

NA Solid tumors Phase 1 & 2; recruiting NCT00582816 University of Wisconsin, Madison

NK cells after allogeneic peripheral blood
stem cell transplant from HLA-
matched donors

NA Sarcomas
Neuroblastoma
Desmoplastic small round
cell tumors

Phase 1; recruiting NCT01287104 National Cancer Institute

Autologous NK cells and rhIL-15 after
lymphodepleting chemotherapy

NA Brain tumors
Sarcoma
Wilm tumor
Rhabdomyosarcoma

Phase 1; recruiting NCT01875601 National Cancer Institute

CMV, cytomegalovirus; LMP, latent membrane protein; VZV, varicella zoster virus.
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with docetaxel and carboplatin before autologous
EBV-specific T-cell infusion is ongoing and actively
recruiting patients (Clinicaltrials.gov registry num-
ber NCT 00953420).

To improve these results, investigators have also
modified their manufacturing process to develop
CTLs that target LMP-1 and LMP-2, the most
common EBV antigens seen in NPC (113). The
safety and the anti-tumor activity of LMP-1 and
LMP-2 specific T cells, in both the autologous as well
as allogeneic (most closely HLA-matched) setting,
are now being investigated in phase I trials
(Clinicaltrials.gov registry numbers NCT00516087
and NCT01447056). Expression of these EBV-spe-
cific antigens on tumor cells also makes NPC an ideal
disease to be treated using EBV-specific vaccines. Its
therapeutic application is being investigated in clinical
trials for adults with NPC (Clinicaltrials.gov registry
numbers NCT01800071 and NCT0104405).

Miscellaneous cell-based approaches

NK cells are known to play an important role in host
anti-tumor immunity through their direct cytotoxic
effect on the tumor cells as well as mediation of anti-
body-dependent cellular toxicity. Recently, adoptive
transfer of donor-derived NK cells has been of interest
for therapeutic use in childhood cancers because of
their potential “graft versus tumor” effect. KIR-mis-
matched (killer immunoglobulinelike receptors) NK
cells from haploidentical donors have been observed to
improve survival in adult patients with acute myeloid
leukemia (AMLQ16 ) (118) as well a small number of
children with refractory solid tumors (119). When
HLA ligands against the inhibitory KIRs present in the
donor are lacking in the recipient, cells without the
inhibitory ligand may trigger the NK cell activation,
thereby associating the enhanced alloreactivity of NK
cells with the anti-tumor effect (119). Although the
potential for the therapeutic application of NK cells is
mainly being tested in hematologicmalignancies, a few
ongoing early clinical trials are also investigating the
role of autologous and allogeneic NK cells in pediatric
solid tumors (Table II½T1�½T2� ). Safety and efficacy of hap-
loidentical donor-derived NK cell infusion post-
transplant (Clinicaltrials.gov registry number
NCT00582816) and after conditioning chemotherapy
with cyclophosphamide andfludarabine (Clinicaltrials.
gov registry number NCT00640796) are being inves-
tigated in refractory/recurrent solid tumors in children
and adolescents, particularly ESFT and rhabdomyo-
sarcoma. NKTs are an evolutionary-conserved subset
of T cells characterized by expression of an invariant
TCR a-chain (Va24-Ja18) (73,78,79,120). NKTs
exert their anti-tumor activity by direct cytotoxic effect

on CD1-dþ cells or indirectly by activation of the NK
cells (121,122). Although majority of the human solid
tumors do not express CD1-d, nearly half of the me-
dulloblastoma tumor specimens in a recent study were
reported to have uniform surface expression of CD1-
d (significantly higher levels in the Sonic Hedgehog
molecular subgroup) (123). In this pre-clinical study,
intracranial injections of NKTs induced regression of
orthotopic medulloblastoma xenografts in NOD/
SCID Q17mice (123). NKTs have also been shown to
suppress tumor growth by killing the CD1-dþ tumor-
associated monocytes/macrophages (TAMs Q18) in pre-
clinical models of human neuroblastoma (122).
Furthermore, NKTs genetically modified to express
GD2-specific CARs have shown promising anti-tumor
activity in pre-clinical models (Heczey et al, presented
at the 2013 American Society of Gene and Cell Ther-
apy Annual Meeting, unpublished). Lymphokine-
activated killer (LAK) cells are tumoricidal effectors
derived from the in vitro stimulation of a subpopulation
ofperipheralCD8þ cellswithhighconcentrationof IL-
2. Unlike LAK cells, tumor infiltrating lymphocytes
(TILs) induce tumor cell killing in a MHC-restricted
manner by recognizing the tumor antigen expressed on
the cell surface in association with the MHC class I
molecule. Although use of ex vivo expanded LAK cells
and TILs for cancer therapy have been investigated in
various adult malignancies (124e126), their potential
therapeutic use in children is yet to be studied.

Summary

Cellular immunotherapy using active immunization
or adoptive transfer of immune effector cells may
provide less toxic therapeutic options for children
with solid tumors. Cell therapy can potentially
generate additional sustained clinical responses by
using alternate pathways of tumor-cell killing. There
have been some success stories. However, more
concerted efforts and multi-institutional collabora-
tions are required to have adequate number of pa-
tients to appropriately power these studies and better
assess the treatment efficacy. Our challenge is to
firmly establish the efficacy of these approaches,
continue to safely improve their anti-tumor activity
and identify ways to integrate them with the current
multimodality treatments. The more we learn about
the immune system and its role in tumorigenesis, in
conjunction with tumor biology, the better equipped
we will become in developing effective targeted cell-
based therapies for pediatric solid tumors.
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