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Given superior analytical features, MS proteomics is well suited for the basic investigation
and clinical diagnosis of human disease. Modern MS enables detailed functional characteri-
zation of the pathogenic biochemical processes, as achieved by accurate and comprehensive
quantification of proteins and their regulatory chemical modifications. Here, we describe how
high-accuracy MS in combination with high-resolution chromatographic separations can be
leveraged to meet these analytical requirements in a mechanism-focused manner. We review
the quantification methods capable of producing accurate measurements of protein abundance
and posttranslational modification stoichiometries. We then discuss how experimental design
and chromatographic resolution can be leveraged to achieve comprehensive functional char-
acterization of biochemical processes in complex biological proteomes. Finally, we describe
current approaches for quantitative analysis of a common functional protein modification:
reversible phosphorylation. In all, current instrumentation and methods of high-resolution
chromatography and MS proteomics are poised for immediate translation into improved
diagnostic strategies for pediatric and adult diseases.
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1 Introduction

Ever since the first discovery of specific proteins associated
with human disease [1], the field of protein chemistry and
later proteomics sought to identify new and improved mark-
ers of disease and targets of therapies. While the instrumen-
tation for analytical chemistry and MS has steadily improved,
incorporation of this approach into preclinical investigation
and clinical care has lagged [2]. With notable exceptions,
such as MS-based detection of bacterial pathogens [3], and
drug and metabolites [4, 5], recent advances in MS remain
largely confined to analytical chemistry laboratories [6]. Re-
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cently, we and others have sought to apply high-accuracy
MS [7] approaches for the discovery of improved diagnostic
markers and therapeutic targets [8–16]. As a result of these
and other studies, several methodological requirements for
translational and clinical proteomics have emerged, including
the need to balance analytical sensitivity and accuracy with the
breadth of analyte detection, as driven by sample throughput.
Here, we review the recently developed mass spectrometric
methods in their current ability to enable comprehensive and
quantitative proteomics, as they relate to the translational and
clinical applications.

2 Biological MS proteomics

Protein activities in cells are controlled by multiple fac-
tors, including but not limited to protein synthesis and
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degradation [17], alternative splicing [18], posttranslational
chemical modification [19], intracellular localization [20], and
interaction with cofactors and regulators [21]. Understanding
differential regulation of all these mechanisms requires
accurate quantification of proteins and their proteo- and
chemoforms (i.e. molecules with identical sequence but
different chemical modifications) , which is increasingly
being achieved by combining MS-based proteomics with
biochemical techniques and computational analyses [22–25].
These approaches generate data of increasing breadth and
depth, as evidenced by the recently established workflows for
mass spectrometric detection of posttranslationally modified
peptides [26, 27]. The general analytical requirement to
obtain such biologically meaningful data is the possibility
to accurately and sensitively measure the abundance of all
relevant protein chemoforms in a sample. Here, we focus on
bottom-up proteomics approaches, which analyze peptides
generated by enzymatic or chemical proteolysis instead of
the corresponding intact proteins, because this approach
remains the most prevalent today [7, 28]. Recent improve-
ments in intact protein analysis should lend themselves to
large-scale intact proteomics in the foreseeable future [29].

3 Quantitative proteomics

High-throughput quantification of proteins and peptides his-
torically relied on dye fluorescence intensity of gel resolved
proteins, i.e. DIGE [30], or on correlative measures such as the
number of fragmentation spectra recorded for a given protein
[31]. Nowadays, these methods are used less frequently, be-
cause improvements in chromatography, ionization, MS in-
strumentation, and data analysis enable more accurate quan-
tification by direct measure of currents generated by specific
peptide ions. The signal produced depends not only on the
specific analyte concentration, but also on the efficiency of
formation of the relative ions (ionization and fragmentation
properties, as applicable). As a result, ion current-based quan-
tification is always a relative and sample-specific measure.

With the exception of methods dependent on reporter ions,
discussed later, quantification of peptides by MS requires
multiple measurements of the mass analyzer current gener-
ated by specific ions. These measurements are integrated in
the time domain of the corresponding chromatographic peak
to calculate the AUC, which is the complete quantitation met-
ric [32, 33]. This method is more robust than instantaneous
ion current measurements, reducing the variability produced
by differential chromatographic properties of peptides and
variable ionization efficiencies.

Using modern software, specific ion currents can be ex-
tracted from any series of mass spectra. For example, signal
intensity of un-fragmented peptide ions can be retrieved from
full-range high-resolution data-dependent precursor scans
[32, 33], a strategy that in principle enables proteome-wide
quantification. However, far higher sensitivity, precision, and
linear dynamic range are achieved by targeted quantification,

Table 1. Analytical features of quantitative MS methods.

DDA SRM PRM DIA

Sensitivity Medium High High High
Specificity Medium High High Medium
Throughput 5000 150 150 (600a)) 2000

Relevant metrics describing bottom-up quantification methods.
Throughput indicates the maximum number of analytes currently
accessible per experiment using a single LC separation with typ-
ical conditions, and assay scheduling for targeted methods.
a) Internal standard triggered-PRM (IS-PRM).

which consists of detecting ions within defined m/z win-
dows selected by mass filters of increasing resolving power
(Table 1). The most widespread implementation, still consid-
ered the gold-standard for peptide quantitation, is SRM (also
referred to as MRM for multiple reaction monitoring), which
uses triple-stage quadrupole instruments to first filter specific
m/z range for fragmentation and subsequently filter specific
fragment ions produced by collision-induced dissociation
(CID) before dynode detection [34, 35]. This method bene-
fits from the high sensitivity of dynode detectors, and the
robustness conferred by the uninterrupted ion beam, but is
limited by the relatively low resolution of current mass filters
that hinders the specificity of the assays, which thus require
careful validation [36, 37].

Parallel reaction monitoring (PRM) is conceptually similar
to SRM in the use of mass filtering of narrow precursor iso-
lation windows (Table 1), but uses high-resolution mass ana-
lyzers, such as the Orbitrap, to enable acquisition of complete
high-resolution fragment ion spectra [38,39]. While compara-
ble in sensitivity to SRM, PRM enables potentially complete
sequencing of the target peptide, with the consequent im-
provements in specificity and accuracy of quantitation. How-
ever, its higher duty cycle may reduce assay multiplexing, a
drawback recently alleviated by the introduction of the inter-
nal standard triggered PRM approaches [40]. Both methods
enable absolute sensitivity in the attomolar range, and up to
five order of magnitude of linear dynamic range, which is
still less than the biologic concentration range of proteins in
human tissues [41, 42].

On the other hand, data-independent acquisition (DIA) in
principle can overcome the limited throughput of targeted
methods by iteratively selecting portions of the m/z range
for fragmentation, prior to high-resolution detection of frag-
ments from all the filtered precursor ions (Table 1). Sub-
sequent deconvolution of these fragmentation spectra per-
mits peptide identification and extraction of chromatographic
elution peaks for quantification [43–47]. While recent im-
provements in the resolution of TOF spectrometers, such as
the parallel accumulation-serial fragmentation method [48],
promise to increase the instrumental duty cycle to permit
data independent analysis of increasing sensitivity and accu-
racy, recent benchmarking of DIA using existing instruments
demonstrated lower accuracy as compared to PRM and SRM
[49].
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An alternative strategy for peptide quantitation leverages
the detection of reporter ions generated by the fragmentation
of chemically reactive isobaric tags, for example iTRAQ and
TMT [50,51]. Both reagents consist of an isotopically encoded
reporter ion, an amine reactive N-hydroxysuccinimidyl moi-
ety, and a normalizing group to ensure that precursors labeled
with different isotopologues remain isobaric and are thus cos-
elected for fragmentation. These reagents are particularly use-
ful in clinical applications as they enable isotopic labeling of
samples derived from human tissues, but require controls for
variable labeling efficiency and limited dynamic range [52].

4 Towards comprehensive quantification

While current approaches for quantitative MS are sufficiently
accurate to permit robust peptide quantification, they have yet
to be applied for comprehensive analyses. For example, a typi-
cal SRM assay with chromatographic scheduling can monitor
on the order of 100 peptides (Table 1). Conversely, data-
dependent acquisition (DDA) experiments, implementing ei-
ther precursor ion current or reporter ion quantification, per-
mit measuring the abundance of several thousand peptides
across multiple samples, although with reduced precision,
reproducibility, and sensitivity. These observations provided
the rationale to consider targeted approaches as a mere vali-
dation method for comprehensive DDA surveys. However, it
is important to note that the complexity of mammalian tryptic
proteomes far exceeds the sequencing duty cycle of current
instruments [53], and that DDA is biased toward abundant
and readily ionizable peptides that often do not include ana-
lytes of interest [54]. As a consequence, these approaches may
not be suitable for the analysis of relevant molecular markers.

However, for many human diseases, including childhood
diseases, comprehensive proteomic profiling may not be nec-
essary, as relevant molecular markers have been identified us-
ing hypothesis-based or other high-throughput approaches
such as genomics. For example, numerous childhood and
adult cancers exhibit oncogenic activation of kinase signaling
[55, 56], and chromatin and gene expression regulatory path-
ways [57,58]. Thus, measurements of biologically or patholog-
ically meaningful analytes may not require “whole-proteome”
approaches, and instead may rely on quantification of marker
panels defined to probe specific pathways, for example the
PI3K-mTOR/MAPK signaling cascade [59] or the DNA dam-
age response network [60]. This can also involve knowledge-
based “sentinel” proteins [61], or other markers of pathway
activity, such as those generated by reduced representation
approaches [62]. Collections of SRM assays for this purpose
have already begun development for cancer and infectious
diseases [63–66].

The major determinant of throughput for both analytes
and specimens is the duty cycle of targeted mass spectro-
metric detection in relation to the time scale of analytical
chromatographic separation. One obvious solution for this
problem involves enhancing chromatographic resolution

prior to MS analysis to obtain adequate separation over
extended chromatographic gradients [67]. This rationale
was indeed successfully applied to increase the number of
targeted MS assays scheduled in a single experiment [68].
Improved chromatographic resolution can also be achieved
by multidimensional and orthogonal separation techniques
[69,70], which also provide a means to improve mass spectral
sampling, and detection and quantification of low abundance
ions, thereby increasing the exposure of specific proteome
subsets such as posttranslationally modified peptides
[7, 71–73]. However, most offline sample fractionation work-
flows are potentially hindered by sample losses that limit their
overall robustness and reproducibility [74]. Online chromato-
graphic fractionation has been successfully applied to DDA
experiments, demonstrating high efficiency and sensitivity
due to automation and reduced sample requirements [75–78].
In unpublished results from our laboratory, we observed
that automated online fractionation using multidimensional
chromatography efficiently and reproducibly separated pep-
tides from low-abundance transcription factors from other
abundant isobaric ions coeluting in final chromatographic
dimension coupled to nanoelectrospray ionization. This
enabled accurate quantification by targeted precursor and
fragment ion detection of analytes that were otherwise not
detected at all using conventional offline multidimensional
or online single dimensional chromatographic separations.

Due to the variability of peptide ionization and fragmen-
tation, all quantitative methods based on ion current extrac-
tion are inherently relative in nature [32, 33, 79]. Extracted
ion chromatograms can be matched to compare the sig-
nal produced by the same peptide in different experiments.
Such label-free methods have been used for comprehensive
analysis of phosphorylation stoichiometry in model cell sys-
tems [32, 33, 80]. This strategy was also used in translational
and preclinical studies to identify human disease biomark-
ers [12, 14, 16]. However, far more accurate measurements
can be achieved using synthetic external reference peptides
by comparing the signals produced by isotopologue peptides
undergoing simultaneous chromatographic separation and
ionization, thus minimizing technical variability and noise.
Such approaches require isotopically encoded reference pep-
tides for all the targeted analytes. Metabolic labeling of cell
lines or primary cells in vitro has been used to generate ref-
erence standards for relative quantification of tumor samples
[81–83]. However, it is still unclear whether such standards
sufficiently capture the complexity of biologically variable an-
alytes, such as specific posttranslational modifications. More-
over, differential protein turn-over rates may lead to uneven
proteome labeling [17]. Tissue samples can also be directly
labeled using isotopically encoded chemical reagents includ-
ing cysteine reactive moieties [84], 18O water [85], Itraq, and
TMT reagents [50, 51] as well as other amine reactive groups
producing dimethyl [86, 87] or nicotinic acid derivative
[88, 89] adducts. While permitting universal labeling for
quantitative MS, such approaches require controls for vari-
able or nonspecific labeling. Alternatively, quantitation can
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be achieved using isotopologue synthetic peptides, as they
can be introduced at known concentrations directly, thus en-
abling absolute quantification [35, 90].

5 Towards comprehensive functional
proteomics

Along with protein abundance, measured by quantification
of the corresponding peptides, posttranslational protein mod-
ifications are biologically important regulatory mechanisms
that currently can be analyzed best using quantitative MS
[91]. In particular, the well-established regulatory functions of
protein kinase signaling led to the refinement of methods for
enrichment and analysis of phosphorylated peptides. MS is
particularly well suited for characterization of protein chemo-
forms, as specific chemical modifications produce specific
diagnostic alterations of peptide molecular mass. However,
the substoichiometric nature of protein phosphorylation and
the relatively low abundance of many kinases and kinase sub-
strates pose serious challenges for robust measurements of
site occupancies and stoichiometries. Instrumental advances
that enable robust phosphoproteomics include the develop-
ment of specific affinity chromatography reagents and chro-
matographic strategies for the enrichment of phosphorylated
peptides [71, 72, 92–96]. Such approaches, for example, have
recently been used to measure biological kinetic processes
[97], and have been successfully coupled to targeted detection
for enhanced sensitivity [98].

Enrichment of phosphorylated peptides is most commonly
achieved using offline separations, that despite efforts to-
ward miniaturization and automation [62, 99], are still prone
to variable adsorptive losses that can potentially confound
quantification measurements. To overcome this limitation,
online chromatographic enrichment of phosphorylated pep-
tides has been developed [100,101]. Importantly, the detection
of phosphorylated peptides does not appear to be significantly
affected by their intrinsic chromatographic and ionization
properties [28], suggesting that improved exposure afforded
by online multidimensional chromatography might enable
robust and sensitive quantitative analysis. Consistent with
this notion, enhanced detection of phosphorylated peptides
was observed using online fractionation by combining alka-
line reverse phase and strong-anion exchange chromatogra-
phy [76,77]. Importantly, these automated multidimensional
chromatographic methods might improve the detection and
quantitation of other chemically modified, for example acety-
lated, methylated etc., peptides without the need for dedicated
affinity enrichment procedures, thus providing a generalized
method for quantitative functional proteomics [71].

6 Future directions

There is a clear and unmet need for improved strategies
for diagnosis, prognostication, and treatment of human

disease. Current and emerging methods for high-resolution
chromatography and MS now enable routine accurate and
sensitive quantification of many biologically and patho-
logically relevant biomarkers. In particular, modern MS
satisfies the analytical requirements for comprehensive
functional proteomics. These methods enable accurate
quantification over the wide range of analyte concentra-
tions present in clinical tissue specimens. In addition
to data-independent approaches, recent advances in
mechanism-based analysis of specific cellular processes may
permit clinically relevant quantification of biologically or
pathologically functional proteome subsets. Specifically, this
is empowered by robust and reproducible sample processing
and fractionation, which is now achievable using automated
online multidimensional chromatography systems. This
should enable not only precision functional proteomics
by improving targeted detection of chemically modified
peptides and proteins, but also provide specific mechanistic
insights into biological and disease processes themselves.
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