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Abstract

Background: High-accuracy mass spectrometry enables near comprehensive quantification of the components of
the cellular proteomes, increasingly including their chemically modified variants. Likewise, large-scale libraries of quantified
synthetic peptides are becoming available, enabling absolute quantification of chemically modified proteoforms, and
therefore systems-level analyses of changes of their absolute abundance and stoichiometry. Existing computational
methods provide advanced tools for mass spectral analysis and statistical inference, but lack integrated functions for
quantitative analysis of post-translationally modified proteins and their modification stoichiometry.

Results: Here, we develop ProteoModlR, a program for quantitative analysis of abundance and stoichiometry of post-
translational chemical modifications across temporal and steady-state biological states. While ProteoModlR is intended
for the analysis of experiments using isotopically labeled reference peptides for absolute quantitation, it also supports
the analysis of labeled and label-free data, acquired in both data-dependent and data-independent modes for relative
quantitation. Moreover, ProteoModlR enables functional analysis of sparsely sampled quantitative mass spectrometry
experiments by inferring the missing values from the available measurements, without imputation. The implemented
architecture includes parsing and normalization functions to control for common sources of technical variation. Finally,
ProteoModlR’s modular design and interchangeable format are optimally suited for integration with existing
computational proteomics tools, thereby facilitating comprehensive quantitative analysis of cellular signaling.

Conclusions: ProteoModlR and its documentation are available for download at http://github.com/
kentsisresearchgroup/ProteoModlR as a stand-alone R package.

Keywords: Mass spectrometry, Quantitative proteomics, Post-translational modification stoichiometry,
Functional analysis, R

Background
Studies of cellular signaling have historically relied on
immunoassays due to their ease of use and widespread
accessibility. However, their variable specificity, semi-
quantitative nature and availability only for selected pro-
teins and post-translational modifications (PTMs) hinder
their application to biological problems that require ac-
curate, precise and multi-parametric measurements.
High-resolution mass spectrometry (MS) satisfies these
requirements, enabling quantitative measurements of
post-translational modifications across thousands of

proteins, with proteome coverage approaching genome-
scale levels [1–3].
In bottom-up mass spectrometry, proteins are cleaved

into peptides, whose identity is determined from the ana-
lysis of their fragmentation mass spectra. Likewise, peptide
adducts from post-translational chemical modifications
produce mass shifts in precursor and fragment ions that
are used for PTM identification and localization [4, 5].
Once identification of peptides and PTMs is accom-
plished, relative peptide abundance can be estimated from
the intensity of the corresponding MS signal, i.e. from ex-
tracted ion current of either precursor or fragment ions.
However, the chemical composition of each peptide deter-
mines its ionization properties and therefore its specific
MS signal-response function. Absolute peptide quantita-
tion, required for stoichiometry calculations, depends on
the use of reference standards to control for variable
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chromatographic and ionization properties of peptides
[6, 7]. Furthermore, apparent differences in MS signals
can be due to variations in both peptide abundance and/
or its modification stoichiometry. Thus, functional prote-
omic analyses require deconvolution of these two distinct
biological processes, in addition to control of sources of
technical variation [8].
Increasing complexity of biological mass spectrometric

experiments has prompted the development of several
computational programs for mass spectral analysis, ion
current extraction, and statistical inference. For example,
MaxQuant enables peptide identification, quantitation
and PTM site localization [9, 10]. Skyline is designed
for precise peptide quantification based on extracted
ion chromatograms (XIC) [11]. MSstats permits statis-
tical comparisons of quantitative proteomics data,
whereas NetworKIN and Scaffold enable functional
annotation [12, 13]. However, these programs lack in-
tegrated functions for quantitative analysis of post-
translationally modified proteins or do not compute
modification stoichiometry.
Here, we describe a generalized method for quantitative

analysis of differential abundance and PTM stoichiometry
from peptide-based proteomics data. We implemented
this approach in an open-source R program [14], named
ProteoModlR, which also offers normalization functional-
ities to improve the analytical accuracy through control
of common sources of technical variation. Due to its
modular design and interchangeable format, Proteo-
ModlR can process the output of a variety of current
proteomic programs, such as MaxQuant and Skyline,
and facilitates the use of quantitative proteomics for
the analysis of cellular signaling.

Implementation
ProteoModlR calculates differences in peptide abun-
dance and PTM stoichiometry (i.e. the molar fraction of
peptide bearing a given PTM, compared to the total

amount of that peptide) across different experimental
conditions and biologic states, based on intensity mea-
surements obtained using any program for mass spectro-
metric analysis. The input dataset requires identifiers for
proteins, peptides and modifications, along with the sig-
nal intensity measurements for each peptide, formatted
as a comma-separated value (CSV) file, that can be gen-
erated using programs for quantitative mass spectral
analysis such as MaxQuant or Skyline. In particular,
Skyline’s ‘Export Report’ can be customized for direct
import into ProteoModlR. ProteoModlR also accommo-
dates additional protein and sample annotations, includ-
ing PTM site information and functional ontology. The
currently implemented workflow does not perform pro-
tein inference independently and relies instead on the
explicitly provided peptide annotation.
ProteoModlR consists of 3 modules performing Quality

Control, Normalization, and Analysis (Fig. 1, Additional
file 1: Figure S1). For each protein in the input, the Qual-
ity Control module parses the available peptides based on
their modification status. For a given peptide sequence, if
none of the chemoforms bears the modification of inter-
est, then the peptide is used for protein quantification
(therefore labeled as ‘Q’). If, on the other hand, one or
more chemoforms bears the modification of interest, then
all peptides are labeled as ‘modified’ (M) or ‘not modified’
(NM), depending on their annotated PTM status (Fig. 2a).
Furthermore, Quality Control checks the correct format-
ting of the input file, and removes proteins with no quan-
tified peptides. The current implementation of Quality
Control is based on exact amino acid sequences: if incom-
plete or nonspecific proteolysis results in peptides with
different termini, each of them is considered separately.
After annotation, the dataset is exported as a CSV file.
Variable ionization efficiency prevents direct conversion

of MS signal intensities into absolute peptide abundance,
which is required for calculating PTM stoichiometries.
The relative abundance and stoichiometry calculations

Fig. 1 ProteoModlR’s schema. ProteoModlR consists of 3 modules, accepts data from common programs for mass spectral analysis, and generates
open-format results that integrate with existing R programs for network analysis and visualization
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performed by ProteoModlR are therefore based on
three assumptions. First, ProteoModlR assumes that
the samples contain synthetic isotope-labeled peptides
as reference standards, present at equimolar concen-
tration. Second, it assumes that these peptides have
linear signal-response functions with slopes equal or
close to one. In practice, this requires confirmation,
as is currently routine for absolute quantitation
methods [6, 15–17]. Third, ProteoModlR assumes that
all or most of the variants of each peptide produced
by chemical modification of a given protein (hereafter
named ‘chemoforms’) are quantified. This implies that
the total molarity of all peptide chemoforms is equal
to that of the unmodified peptide, and to that of the
protein from which they originated.
For datasets that meet the aforementioned assumptions,

the Normalization module normalizes the intensity values
from the Quality Control output, equalizing the intensity
of the equimolar reference peptides. This normalization
(termed equimolar isotopologue normalization) can
also correct for possible experimental alterations to
chemoforms molarity, such as those produced by en-
richment of chemically modified peptides [18], or due
to variable recovery from chromatographic separation.
This module also reduces technical variability pro-
duced by other sources, such as uneven sample load-
ing and variable efficiency of electro-spray ionization
(Fig. 2b, Additional file 2: Figure S2).
For datasets that may not meet the aforementioned

assumptions, ProteoModlR offers three additional
normalization modes that can be leveraged for correction
of potential technical artifacts. First, normalization by

isotopologue can be performed if a non-equimolar set of
labeled peptides is used, as could be the case for SILAC-
labeled proteomes (Additional file 3: Figure S3). Second,
normalization by total ion current (TIC) can be used, if no
isotopically encoded standard is available (Additional file 4:
Figure S4). Finally, normalization using a set of internal ref-
erence peptides can be used to correct for variations in the
total protein content per cell (Additional file 5: Figure S5).
Recommended normalization strategies for common
experimental designs are provided in the Software
Documentation (Additional file 6). To permit modular
analyses, the output of the Normalization module is
also exported as a CSV file.
Finally, the Analysis module of ProteoModlR calcu-

lates differential abundance and PTM stoichiometry
based on the annotation performed in Quality Control.
Relative abundance is calculated using the intensities of
‘Quantification’ peptides, and expressed as the ratio of
the intensities in every sample to that of the reference
sample. If positional information is provided, PTM stoi-
chiometry is calculated for each site individually, as the
ratio between the intensity of the modified peptide over
the sum of the intensities of all chemoforms of that pep-
tide. Assuming that the experimental dataset contains
quantification annotation for all classes of peptides, as
described above, these calculations are referred to as
exact within ProteoModlR.
To enable approximate analysis of experimental data

that are incompletely annotated, as in the case of proteins
lacking quantified ‘Q’ or ‘NM’ peptides, ProteoModlR can
be used to infer the missing values based on the intensities
of the detected peptides (Fig. 3). As described above,

Fig. 2 ProteoModlR annotates peptides based on their PTM status and controls potential sources of technical variation. a Peptide annotation of
peptides from a hypothetical protein depends on available quantified chemoforms. b Quantitation across three replicate measurements (shades of red)
of five peptides from a protein. c ProteoModlR corrects errors introduced by differential ionization efficiency and technical variability, equalizing the signal
recorded for equimolar reference isotopologues (d–e)
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ProteoModlR assumes that the total molarity of all
chemoforms of a peptide is equal to that of the un-
modified ‘Q’ peptide. If ‘Q’ peptides are not detected,
then approximate abundance can be estimated using
the sum of the intensity of all chemoforms of modified
peptides (‘M’ and ‘NM’ peptides). Likewise, approximate
PTM stoichiometry can be estimated using the intensity
of unrelated ‘Q’ peptide as a proxy for total protein abun-
dance, instead of the total intensity of all chemoforms for
that peptide (Additional file 7: Figure S6). When no equi-
molar isotopologue standard is used, the results of these
calculations approximate biologic differences. In the case
of affinity enrichment of chemically modified peptides,
such as in the case of conventional phosphoproteomic
measurements, ProteoModlR requires appropriate in-
ternal standards to ensure accuracy of the results. The
output of the Analysis module is exported as a CSV file,
allowing for subsequent statistical and network analysis
using existing programs, such as those implemented
in Bioconductor. Further details of the operations

performed by each module are provided in the Software
Documentation (Additional file 6 and available at https://
github.com/kentsisresearchgroup/ProteoModlR).

Results and discussion
To test the functionalities of ProteoModlR, first we used
simulated datasets, modeling MS measurements of
peptides generated from a hypothetical phosphorylated
protein and from loading controls, across three bio-
logical samples (Additional file 8: Simulated Dataset 1
and Additional file 9: Simulated Dataset 7). The datasets
used to test the performance of Normalization module
simulated errors within identical samples, introduced by
common sources of technical variation: i) deterioration
of the efficiency of the LC-ESI-MS instrumentation; ii)
variable sample loading from inaccurate estimation of
protein content, and iii) variable sample loading from
significant variation of specific proteins per cell. In
each case, we were able to correct these errors by using
ProteoModlR to apply normalization by isotopologue,

Fig. 3 ProteoModlR computes exact and approximate abundance and PTM stoichiometry based on the available set of peptides for a given protein.
Exact and approximate calculations for abundance and stoichiometry were tested on simulated datasets modeling a hypothetical protein producing
four peptides, two of which bear a PTM. If the input file contains all ‘Q’, ‘M’ and ‘NM’ peptides, then ProteoModlR computes ‘exact’ relative peptide
abundance, expressed as fold change compared to Sample #1 (a) and stoichiometry (c) If ‘Quantification’ (‘Q’) or non-modified (‘NM’) peptides are not
available, ProteoModlR can calculate ‘approximate’ relative abundances (b) and 'approximate stoichiometry (d) resembling the exact values (Pearson
product–moment correlation coefficient = 0.98)
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equimolar isotopologue, total ion current, or internal ref-
erence peptides (Additional files 2, 3, 4, 5: Figures S2-S5,
Additional files 10, 11, 12, 13, 14: Simulated Datasets 2–6).
For data containing complete measurements of all

peptides under all conditions, we used ProteoModlR to
calculate exact peptide abundances and PTM stoichiome-
tries (Fig. 3a, c). Simulating different types of incomplete
datasets, we then used ProteoModlR to approximate pep-
tide abundance and PTM stoichiometries (Figs. 3b, d,
Additional file 7: Figure S6, Additional files 9, 15, 16, 17,
18: Simulated Dataset 7–11). Similar results were obtained
for the comparison between exact and approximate
PTM stoichiometries. As such, approximate calcula-
tions generated results that highly correlated with the
expected values (Pearson product–moment correlation
coefficient of 0.98 and 0.95 for abundance and stoichi-
ometry, respectively). Thus, this approximation may
suffice for semi-quantitative studies, when complete
data are not available.
To test ProteoModlR’s performance for the analysis of

large-scale quantitative mass spectrometry data and
compatibility with existing programs of mass spectral
analysis, we analyzed changes in relative protein abundance
and phosphorylation stoichiometries of CD8+ T cells upon
interleukin-2 (IL-2) stimulation, as measured using SILAC
and MaxQuant (PRIDE accession: PXD004645) [19]. First,
we used ProteoModlR’s Quality Control and Normalization
modules to correct for differences in loading between
steady-state (light isotope) and stimulated (heavy isotope)
conditions using the total ion current normalization rou-
tine. Since these experiments were performed using metal
affinity chromatography, detection was biased against ‘Q’
and ‘NM’ peptides, and ‘M’ phosphopeptides accounted
for 84% of the detected chemoforms. We thus used
the approximate abundance and stoichiometry calcu-
lation routines in the Analysis module to complement
exact calculations.
Using this approach, we used ProteoModlR to calculate

specific changes in both abundance and phosphorylation
stoichiometry of 2794 proteins upon IL-2 stimulation
(Fig. 4, Additional file 19: Table S1). For example, we
found no changes in abundance or phosphorylation stoi-
chiometry of LCK and ZAP70, in agreement with their
known functions in T cell receptor (TCR) but not IL-2 re-
ceptor signaling [19]. In contrast, we observed apparent
increases in abundance and phosphorylation stoichiom-
etry of STAT5A and NFIL3, in agreement with their
expected involvement in JAK1/2-dependent signaling
induced by IL-2 receptor stimulation [19]. The apparent
increase in STAT5A abundance without a change in phos-
phorylation stoichiometry may be due to an increase in
STAT5A phosphorylation and/or increased protein abun-
dance. Thus, ProteoModlR enabled both exact and approxi-
mate large-scale calculations of protein abundance and

phosphorylation stoichiometry, depending on the presence
of their chemoforms.
Functional analysis of biological processes requires

precise characterization of the activation status of the
relevant effector proteins. In this context, cellular protein
abundance and post-translational modification have im-
portant biological functions. Large libraries of synthetic
peptides now enable near-comprehensive MS analysis of
peptide chemoforms and deconvolution of their respective
ionization efficiency. Consequently, it is now becoming
feasible to calculate the modification stoichiometry of
large sets of proteoforms, which is important for func-
tional analysis of cellular signaling [8, 20, 21]. However,
while existing mass spectrometry analysis programs
allow extraction and visualization of protein expression
levels from quantitative mass spectrometry experi-
ments, calculations of PTM stoichiometry still require
specialized approaches.
ProteoModlR facilitates the analysis of quantitative

mass spectrometry experiments by calculating differen-
tial protein abundance and PTM stoichiometry across
temporal and steady-state biological states. The software
deconvolutes the contribution of chemical modifications
of peptides to their mass spectrometric signal intensity,
thereby calculating both PTM stoichiometry and relative
protein abundance. To this end, ProteoModlR annotates

Fig. 4 ProteoModlR enables large-scale analysis of experimentally
measured protein abundance and PTM stoichiometry. Relative
abundance of four representative proteins from 2784 proteins
analyzed from SILAC-labeled CD8+ T cells stimulated with IL-2,
as compared to unstimulated control, and analyzed using MaxQuant
[19]. T-cell receptor signaling-dependent LCK and ZAP70 proteins
exhibit no changes upon IL-2 stimulation, whereas IL-2 receptor
dependent STAT5A and NFIL3 exhibits increases in abundance or
phosphorylation stoichiometry upon IL-2 stimulation
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the available quantified peptides according to their PTM
status, determining for each modification the chemo-
forms relevant for stoichiometry and abundance calcula-
tions. The software integrates normalization functions to
correct, based on the signal of synthetic reference stan-
dards, MS intensity distortion produced by variable pep-
tide ionization efficiency, as well as other common
sources of technical variability. Finally, ProteoModlR
calculates relative differences in protein abundance and
PTM stoichiometry, thus facilitating analyses of cellular
protein function.
Missing values in sparsely annotated datasets are com-

monly either filtered out or imputed to enable subsequent
statistical analysis and functional pathway modeling. Pro-
teoModlR introduces an alternative strategy, based on
inferring the quantity of non-detected peptides from the
normalized measured intensities of other peptides derived
from the same protein. It can thus complement and im-
prove the comprehensiveness of currently available tools
for functional analysis. In addition, ProteoModlR’s modu-
lar design and flexible workflow allow for its integration
with existing proteomics software such as MaxQuant and
Skyline, as well as existing statistical and visualization
tools available in Bioconductor. Thus, ProteoModlR’s
computational framework will prove useful for a wide var-
iety of quantitative mass spectrometry studies, including
the comprehensive investigation and quantitative model-
ing of cellular signaling and biochemical pathways.

Conclusions
Here we introduce ProteoModlR for quantitative mass
spectrometry analysis of post-translationally modified
peptides and proteins for functional proteomics of cell
signaling.

Additional files

Additional file 1: Figure S1. Conceptual overview of the operations
performed by ProteoModlR. (A) A set of proteoforms is digested into
peptides and (B) mixed with an equimolar set of synthetic reference
peptides (in blue). (C) MS signal-response is affected by differential
ionization efficiency. Furthermore, MS quantification may present
missing values. (D) ProteoModlR first annotates the available set of
peptides, then (E) corrects errors introduced by technical and biological
variability. Finally, (F) exact or approximate calculations are deployed to
obtain PTM stoichiometry and abundance. (TIF 919 kb)

Additional file 2: Figure S2. Equimolar Isotopologue normalization
corrects for technical variability across measurements, as demonstrated
on simulated data. A) Quantitation across three replicate measurements
of five peptides from a protein of interest (shades of red) and four peptides
from reference proteins (shades of blue). (B) ProteoModlR corrects errors
introduced by technical and biological variability. (C) Quantitation of
heavy labeled equimolar standard peptides is affected by differential
ionization efficiency and technical variability. (D) ProteoModlR equalizes
the intensities of the standard isotopologues for each peptide
independently. (TIF 9310 kb)

Additional file 3: Figure S3. Isotopologue normalization corrects for
technical variability across measurements, as demonstrated on simulated

data. (A) Quantitation across three replicate measurements of five peptides
from a protein of interest (shades of red) and four peptides from reference
proteins (shades of blue). (B) ProteoModlR corrects errors introduced
by technical and biological variability. (C) Quantitation of heavy labeled
standard peptides is also affected by technical variability. (D) If isotopologue
normalization is chosen, ProteoModlR equalizes the intensities of the
standard isotopologues for each peptide independently. (TIF 9821 kb)

Additional file 4: Figure S4. Total ion current normalization corrects
for technical variability across measurements in absence of isotopically
encoded standards, as demonstrated on simulated data. (A) Quantitation
across three replicate measurements of five peptides from a protein of
interest (shades of red) and four peptides from reference proteins (shades of
blue). (B) ProteoModlR corrects errors introduced by technical and biological
variability. (C) Total ion current is also affected by technical variability. (D) If
total ion current normalization is chosen, ProteoModlR equalizes the sum of
the intensities of all peptides in each sample. (TIF 9017 kb)

Additional file 5: Figure S5. Reference peptide normalization corrects
for variations in the total protein content per cell across measurements,
as demonstrated on simulated data. (A) Quantitation across three replicate
measurements of five peptides from a protein of interest (shades of red)
and four peptides from reference proteins (shades of blue). (B) ProteoModlR
corrects errors introduced by biological factors that vary the total amount of
protein per cell, equalizing the intensities of one or more peptides chosen
as internal reference. (TIF 4660 kb)

Additional file 6: Software documentation. The document contains
detailed description of ProteoModlR implementation as well as user
instructions. (PDF 196 kb)

Additional file 7: Figure S6. Output of exact (A) and approximate (B-D)
calculations from simulated datasets. The input contained quantitation
across three replicate measurements of four peptides, two of which
phosphorylated. (TIF 25386 kb)

Additional file 8: Simulated Dataset 1. Normalization simulated
datasets – description. Detailed description of the simulated datasets
used to test ProteoModlR’s normalization module. (TXT 1 kb)

Additional file 9: Simulated Dataset 7. Analysis simulated datasets –
description. Detailed description of the simulated datasets used to test
the analysis module ProteoModlR .(TXT 783 bytes)

Additional file 10: Simulated Dataset 2. Normalization_dataset_no_
error. The file contains a simulated datasets with identical intensity values
for all peptides in all conditions. This dataset is provided as a reference to
evaluate the accuracy of normalization strategies. (CSV 4 kb)

Additional file 11: Simulated Dataset 3. Normalization simulated
dataset 1a. The file contains the simulated datasets used to model
differences in peptide intensity introduced by uneven performance
of the LC/MS instrumentation or unequal sample amount. The output
shows the result of equimolar isotopologue normalization, as displayed in
Additional file 2: Figure S2. (CSV 4 kb)

Additional file 12: Simulated Dataset 4. Normalization simulated
dataset 1b. The file contains the simulated datasets used to model
differences in peptide intensity introduced by uneven performance
of the LC/MS instrumentation or unequal sample amount. The output
shows the result of isotopologue normalization, as displayed in
Additional file 3: Figure S3. (CSV 4 kb)

Additional file 13: Simulated Dataset 5. Normalization simulated
dataset 2. The file contains the simulated datasets used to model
differences in peptide intensity introduced by uneven performance
of the LC/MS instrumentation or unequal sample amount, with no
isotopically labelled internal standard. The output shows the result of
normalization by total ion current, as displayed in Additional file 4: Figure
S4. (CSV 2 kb)

Additional file 14: Simulated Dataset 6. Normalization simulated
dataset 3. The file contains the simulated datasets used to model
differences in the peptide intensity introduced by biological factors that
vary the protein amount per cell by affecting the expression of a limited
subset of the proteome. The output shows the result of isotopologue
normalization followed by normalization by reference peptide, as displayed
in Additional file 5: Figure S5. (CSV 5 kb)

Cifani et al. BMC Bioinformatics  (2017) 18:153 Page 6 of 7

dx.doi.org/10.1186/s12859-017-1563-6
dx.doi.org/10.1186/s12859-017-1563-6
dx.doi.org/10.1186/s12859-017-1563-6
dx.doi.org/10.1186/s12859-017-1563-6
dx.doi.org/10.1186/s12859-017-1563-6
dx.doi.org/10.1186/s12859-017-1563-6
dx.doi.org/10.1186/s12859-017-1563-6
dx.doi.org/10.1186/s12859-017-1563-6
dx.doi.org/10.1186/s12859-017-1563-6
dx.doi.org/10.1186/s12859-017-1563-6
dx.doi.org/10.1186/s12859-017-1563-6
dx.doi.org/10.1186/s12859-017-1563-6
dx.doi.org/10.1186/s12859-017-1563-6
dx.doi.org/10.1186/s12859-017-1563-6


Additional file 15: Simulated Dataset 8. Analysis simulated dataset 1.
This simulated dataset models an input with complete annotation
of peptides required for exact calculations in the Analysis module
of ProteoModlR. This file provides a reference for approximate
calculations, and demonstrates the annotation performed by the
quality control module of ProteModlR. (CSV 5 kb)

Additional file 16: Simulated Dataset 9. Analysis simulated dataset 2.
This simulated dataset models an input with incomplete annotation of
peptides required for exact calculation of abundance in the Analysis
module of ProteoModlR. (CSV 5 kb)

Additional file 17: Simulated Dataset 10. Analysis simulated dataset 3.
This simulated dataset models an input with incomplete annotation of
chemically modified peptides intensity, required for exact calculation of
stoichiometry in the Analysis module of ProteoModlR. (CSV 5 kb)

Additional file 18: Simulated Dataset 11. Analysis simulated dataset 4.
This simulated dataset models an input with incomplete annotation of
non-chemically modified peptides intensity, required for exact calculation of
stoichiometry in the Analysis module of ProteoModlR. (CSV 5 kb)

Additional file 19: Table S1. Chemoforms available for abundance and
stoichiometry calculations from experimentally derived data. The table
contains the peptides available in the experimentally derived dataset
(Fig. 4, [19]) for protein LCK, ZAP70, NFIL3 and STAT5A. For each
chemoform, modification status and Quality Control annotation is
reported. (TIF 4000 kb)
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