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SUMMARY
A more complete understanding of aberrant oncogenic signaling in neuroblastoma, a malignancy of the
developing sympathetic nervous system, is paramount to improving patient outcomes. Recently, we identi-
fied LIN28B as an oncogenic driver in high-risk neuroblastoma. Here, we identify the oncogene RAN as a
LIN28B target and show regional gain of chromosome 12q24 as an additional somatic alteration resulting
in increased RAN expression. We show that LIN28B influences RAN expression by promoting RAN Binding
Protein 2 expression and by directly binding RANmRNA. Further, we demonstrate a convergence of LIN28B
and RAN signaling on Aurora kinase A activity. Collectively, these findings demonstrate that LIN28B-RAN-
AURKA signaling drives neuroblastoma oncogenesis, suggesting that this pathwaymay be amenable to ther-
apeutic targeting.
INTRODUCTION

Defining optimal therapy for patients with neuroblastoma, a pe-

diatric malignancy of the developing sympathetic nervous sys-

tem, continues to present a significant challenge. Although

patients with high-risk disease undergo an intense multimodal

treatment regimen, cure rates remain below 50% and survivors

are burdened with significant long-term morbidities (Maris,

2010). The advent of high-throughput genomic sequencing has
Significance
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drugging frequently altered oncogenic drivers. Genome-wide

association studies (GWAS) have highlighted the importance of

germline variation in both disease susceptibility and in orches-

trating the tumor phenotype, unveiling BARD1 (Capasso et al.,

2009; Bosse et al., 2012), LMO1 (Wang et al., 2011) and, most

recently, LIN28B (Diskin et al., 2012), as predisposition genes

and oncogenic drivers in neuroblastoma subsets. LIN28B is of

particular interest, as we (Diskin et al., 2012) and others (Mole-

naar et al., 2012a) have shown that it is involved in disease initi-

ation, is highly expressed in neuroblastoma, and promotes

MYCN expression.

LIN28B and its paralog LIN28A are RNA binding proteins that

mediate diverse biological functions. The LIN28 family regulates

mammalian stem cell self-renewal and LIN28A, in combination

with NANOG, OCT4, and SOX2, can reprogram human somatic

cells to pluripotent stem cells (Yu et al., 2007). LIN28A and

LIN28B play crucial roles in glucose metabolism, positively regu-

lating the insulin-PI3K-mTOR pathway (Zhu et al., 2011). LIN28A

promotes tissue repair, mediated in part by binding and positively

regulating genes involved in glycolysis and oxidative phosphory-

lation (Shyh-Chang et al., 2013). LIN28 participates in these key

biological processes in part by blocking the maturation of the tu-

mor suppressor microRNA let-7 family (Viswanathan et al., 2008;

Piskounova et al., 2011). In humans, there are 11 closely related

let-7 family members that mediate crucial functions, such as in-

hibiting cell proliferation, promoting differentiation (Boyerinas

et al., 2010), and repressing expression of KRAS (Esquela-Ker-

scher et al., 2008), MYC (Sampson et al., 2007), and HMGA2

(Park et al., 2007). Additionally, LIN28B binds mRNAs directly,

suggesting additional mechanisms by which it influences gene

expression (Peng et al., 2011; Cho et al., 2012; Wilbert et al.,

2012; Hafner et al., 2013; Madison et al., 2013). Consistent with

its oncogenic role, LIN28B is highly expressed in cancers of the

colon (King et al., 2011a, 2011b) and ovary (Helland et al., 2011),

Wilms tumor, germ cell tumors (Viswanathan et al., 2009), and he-

patocellular carcinomas (Wang et al., 2010).Mice overexpressing

LIN28B in the sympathoadrenal lineage develop neuroblastoma

(Molenaar et al., 2012a), mice with intestine targeted LIN28B

expression develop colonic adenocarcinomas (Madison et al.,

2013), mice overexpressing LIN28B in the embryonic kidney

developWilms tumor (Urbachet al., 2014), andmiceoverexpress-

ing LIN28B in hepatic precursors develop hepatoblastomas and

hepatocellular carcinoma (Nguyenetal., 2014).Collectively, these

studies highlight the role of LIN28B in oncogenesis, suggesting

LIN28B influences multiple oncogenic signaling networks in

diverse cellular contexts. Our prior work identified germline varia-

tion at LIN28B as cancer predisposing and demonstrated yet

another potential mechanism influencing LIN28B expression in

normal development and cancer (Diskin et al., 2012). Here we

sought to determine themechanismsbywhich LIN28B influences

neuroblastoma tumorigenesis, ultimately seeking to define op-

portunities for therapeutic manipulation.

RESULTS

LIN28B Expression and Chromosome 12q Gain Are
Associated with RAN Oncogene Expression
To define oncogenic signaling networks strongly influenced by

LIN28B in neuroblastoma, we performed mRNA expression
600 Cancer Cell 28, 599–609, November 9, 2015 ª2015 Elsevier Inc.
profiling of 250 primary diagnostic neuroblastoma tumors ob-

tained via the Children’s Oncology Group (COG) and the Thera-

peutically Applicable Research toGenerate Effective Treatments

project (TARGET; https://ocg.cancer.gov/programs/target). We

focused on high-risk neuroblastoma, considering MYCN ampli-

fied (n = 68) and non-amplified (n = 182) tumors separately,

and defined two cohorts at the extremes of LIN28B expression

(n = 20 per cohort; 10 highest, 10 lowest). Utilizing significance

analysis of microarray (SAM) analyses, we assessed differential

expression of 17,574 transcripts and utilized the Ingenuity

Pathway Analysis (IPA; http://www.ingenuity.com) to assess as-

sociation with canonical molecular pathways. This analysis

showed several biologically relevant gene sets significantly

associated with LIN28B expression, including several DNA dam-

age response and cell cycle regulation gene sets, as well as RAN

signaling (Tables S1 and S2). These results are consistent with

multiple previous investigations that utilized high-throughput

sequencing approaches to identify LIN28-bound mRNAs and

that demonstrated a key role for the LIN28 family in cell cycle

regulation (Peng et al., 2011; Cho et al., 2012; Wilbert et al.,

2012; Hafner et al., 2013; Madison et al., 2013), as well as with

studies linking LIN28/let-7 to DNA damage repair (Oh et al.,

2010; Wang et al., 2013).

As we sought to discover uncharacterized LIN28B-influenced

signaling networks, we chose to further study RAN signaling.

RAN (Ras-related nuclear protein) is a small Ras-related GTPase

that plays crucial roles in nuclear trafficking and cell cycle regu-

lation (Deng et al., 2013; Clarke and Zhang, 2008) and promotes

phosphorylation and activation of Aurora kinase A (AURKA; Tsai

et al., 2003; Trieselmann et al., 2003), itself a therapeutic target in

neuroblastoma (Maris et al., 2010;Mosse et al., 2012). Moreover,

RAN is overexpressed in multiple malignancies including breast,

lung, prostate, and colon cancer (Xia et al., 2008). Whereas

KRAS is a known let-7 target (Esquela-Kerscher et al., 2008),

the role of RAN in aberrant oncogenic signaling and its relation-

ship to LIN28B had not been previously defined.

Because LIN28B expression is high inMYCN amplified neuro-

blastoma (Diskin et al., 2012; Molenaar et al., 2012a), we first

focused on IPA results in the MYCN amplified cohort and

observed RAN signaling as one of the top associated canonical

pathways (p = 6.93 10�6; rank: 10/231 pathways tested). Multi-

ple pathway members exhibited significantly increased expres-

sion in high LIN28B-expressing tumors at a SAM q-value of

0.01, including RAN itself (Table S3). Evaluation of IPA results

for the MYCN non-amplified cohort confirmed an association

of LIN28B expression and RAN signaling (p = 0.0017; rank 16/

200 pathways tested; Tables S2 and S4). We observed that

LIN28B and RAN expression are highly correlated in neuroblas-

toma, in the MYCN-amplified subset of cases (Figure 1A) and

more modestly in the non MYCN-amplified subset of cases

(Figure 1B). We validated these findings in two additional neuro-

blastoma datasets (Valentijn et al., 2012; Oberthuer et al., 2010;

Figures S1A and S1B).

RAN is located at chromosome 12q24, a region that we (Wang

et al., 2011; Figures S1C–S1E) and others (Wolf et al., 2010) have

shown to harbor recurrent DNA copy number gain in neuroblas-

toma. Here, we measured DNA copy number alterations using

single nucleotide polymorphism (SNP) arrays in 373 high-risk

neuroblastoma primary tumors and confirmed 12q24 as a region

https://ocg.cancer.gov/programs/target
http://www.ingenuity.com
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Figure 1. LIN28B Expression and Chromosome 12q Gain Are Positively Correlated with the Expression of the RAN Oncogene

(A and B) Correlation between LIN28B and RAN expression in 68 high-risk, MYCN-amplified (A) and 182 MYCN-non-amplified primary neuroblastomas (B).

(C) RAN mRNA expression in neuroblastoma tumors with and without 12q gain.

(D) Neuroblastomas with and without 12q gain in the context of MYCN-amplified (MYCN-A) andMYCN-non-amplified (MYCN-NA) tumors. Data analyzed using

Pearson’s Chi-square test, with a degree of freedom of 1, c2 of 10.6039, and p = 0.0011.

(E) RANmRNA expression in neuroblastoma cases with 12q gain,MYCN amplification, both alterations, or neither. ANOVA testing was performed, followed by a

post hoc Tukey HSD test.

(F) Expression ofRANmRNA in primary neuroblastoma tumors, as shown for International NeuroblastomaStaging System (INSS) stages 1 through 4. The number

of tumors is indicated in parentheses. Neuroblastoma datasets obtained from the TARGET Consortium.

(G) Kaplan-Meier survival analysis of patients with neuroblastoma, with individuals grouped by low and high RAN expression in their tumors. The p values are

notedwhere appropriate. For box-and-whisker plots, the bottom of the boxplot corresponds to quartile 1 of the data, the inscribed line to quartile 2, and the top of

the boxplot to quartile 3; lines below and above the boxplot correspond to non-outliers within the first and third quartiles. Data points beyond the lines constitute

outliers.

See also Tables S1, S2, S3, S4, and S5 and Figure S1.
of significant gain (GISTIC residual q = 7.15 3 10�7; Figures

S1C–S1E; Beroukhim et al., 2007). All DNA copy number gains

involving RAN were single copy; no high-level amplifications

were observed (Figure S1F). Chromosome 12q24 gain was not

correlated with LIN28B expression, but was significantly associ-

ated with increased RAN expression (Figure 1C) and with the

MYCN non-amplified subset (Figure 1D). We next determined

whether copy number gain and/orMYCN amplification increases

mRNA levels of genesmapping within the 12q24wide peak iden-

tified by GISTIC (chr12: 122,212,660–133,851,895). A total of

146 genotyped tumors overlapped with our expression array

data and were divided into four distinct groups based on the

presence/absence of 12q24 gain and MYCN amplification. A

total of 79 known genes map to the 12q24 GISTIC wide peak,

and we tested 67 with available probesets mapping to 12q24

for differential expression among these groups (Table S5). Both

chromosome 12q24 gain and MYCN amplification (which is
Ca
correlated with high LIN28B expression) were associated with

higher RAN expression (p = 0.02 and 0.04, respectively; Fig-

ure 1E). In the relatively rare context of combined MYCN ampli-

fication and 12q gain (n = 11), neuroblastoma tumors showed

even higher levels of RAN expression (Figure 1E), suggesting

that LIN28B and 12q gain independently promote RAN expres-

sion. Indeed, only 6/67 genes tested (8.9%) showed more

significant association. We next demonstrated that RAN ex-

pression was highly correlated with advanced stage neuroblas-

tomas in TARGET data and in two independent neuroblastoma

datasets (Valentijn et al., 2012; Oberthuer et al., 2010; Figures

1F, S1G, and S1H). Accordingly, RAN expression was also asso-

ciated with decreased overall survival (Wang et al., 2006; Valen-

tijn et al., 2012; Figures 1G and S1I). Although multivariate

analysis did not reveal RAN expression to be an independent

prognostic indicator of poor outcome, these data demonstrate

that high RAN expression is a common feature of advanced
ncer Cell 28, 599–609, November 9, 2015 ª2015 Elsevier Inc. 601
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Figure 2. RAN Promotes Neuroblastoma

Cell Growth, Phenocopying the Role of

LIN28B

(A–D) Growth curves of control and neuroblastoma

cell lines Kelly (A), NGP (B), SKNDZ (C), and SK-N-

BE-2C (D) transfected with pooled RAN siRNAs. All

cell lines are homozygous for the rs17065417

risk allele, which positively correlate with LIN28B

expression (Diskin et al., 2012). In addition, NGP

and SKNDZ exhibit regional 12q24 gain. Western

blotting demonstrates knockdown of RAN, with

Ku80 as loading control.

(E) Western blotting of LIN28B and RAN in NGP

neuroblastoma cell lines with LIN28B depletion and

RAN complementation.

(F) Cell proliferation in NGP neuroblastoma cell

lines with LIN28B depletion and RAN comple-

mentation. Con, control. Error bars represent SEM.

*p < 0.01 by Student’s t test. **p < 0.0001.

See also Figure S2.
neuroblastomas. Collectively, our findings demonstrate that

both LIN28B expression and chromosome 12q gain are associ-

ated with increased RANmRNA expression, the former primarily

in MYCN amplified cases, and the latter in high-risk tumors

without MYCN amplification, and support the hypothesis that

LIN28B and RAN can both drive a malignant phenotype in

neuroblastoma.

RAN Promotes Neuroblastoma Cell Growth,
Phenocopying the Effects of LIN28B
We and others showed that LIN28B depletion directly led to

decreased neuroblastoma proliferation in vitro (Diskin et al.,

2012; Molenaar et al., 2012a). To strengthen this observation,

we demonstrated that LIN28B knockdown led to increased sur-

vival in a tail vein metastatic neuroblastoma model (Figure S2A).

Although RAN positively regulates cell proliferation inmultiple tu-

mors, including pancreatic adenocarcinoma (Deng et al., 2013)

and glioblastomamultiforme (Guvenc et al., 2013), its role in neu-

roblastoma was unknown. If one principal effect of LIN28B is to

upregulate RAN expression, then RAN depletion would be ex-

pected to phenocopy LIN28B depletion. We first used pooled

siRNAs to deplete RAN in neuroblastoma cell lines with high

levels of LIN28B and RAN, demonstrating significant decreases

in cellular proliferation, similar to what we and others previously

observed with LIN28B depletion; Figures 2A–2D) Second, we

depleted RAN with five independent shRNAs, demonstrating

consequent decreases in cell proliferation (Figures S2B–S2D).

Third, we overexpressed RAN in a neuroblastoma cell line

with lower levels of RAN expression, demonstrating an increase

in cell proliferation (Figure S2E). Finally, we determined whether

RAN overexpression could rescue the decreased proliferation

previously demonstrated with LIN28B knockdown (Diskin
602 Cancer Cell 28, 599–609, November 9, 2015 ª2015 Elsevier Inc.
et al., 2012). We generated the following

cell lines: (1) Control, (2) shLIN28B,

(3) LIN28B depleted, with exogenous

expression of RAN. Western blotting

validated appropriate LIN28B and RAN

expression (Figure 2E). With LIN28B

knockdown, cell proliferation decreased
and this effect was effectively rescued with restoration of RAN

(Figure 2F), arguing that RAN is one of the important downstream

effectors of LIN28B.

LIN28B Influences the Expression of RAN GTPase
We next focused on defining the mechanism by which LIN28B

regulates RAN expression. We examined a subset of neuroblas-

toma cell lines (four with higher LIN28B levels and two with lower

levels), confirming the positive correlation between LIN28B and

RAN mRNA (Figure 3A) and protein (Figure 3B). Because RAN

cycles between an activated and inactivated state, RAN-GTP

and RAN-GDP, we investigated whether higher levels of total

RAN correlated with higher levels of RAN-GTP. Cell lines with

higher levels of LIN28B and total RAN (NGP and Kelly) had higher

levels of RAN-GTP, compared to those with lower levels of

LIN28B and total RAN (SK-N-SH and NB16; Figures 3C and

S3A), suggesting that higher total RAN levels are associated

with higher RAN-GTP levels. Because this assay does not quan-

tify the amount of RAN-GDP, it does not distinguish between

whether levels of RAN-GTP are increased relative to RAN-GDP

or whether both RAN-GDP and RAN-GTP levels are similarly

increased.

We next determined whether LIN28B directly influences RAN

expression using both lentiviruses encoding an shRNA directed

against LIN28B (shLIN28B-1) to deplete LIN28B in two neuro-

blastoma cell lines (Figures 3D and 3E) and an independent len-

tiviral shRNA pool (shLIN28B-p) to deplete LIN28B in a third neu-

roblastoma cell line (Figure 3F). We achieved effective LIN28B

depletion, leading to decreased RANmRNA and protein expres-

sion (Figures 3D–3F). To further define the effect of LIN28B on

RAN expression, we depleted LIN28B using four additional

shRNAs, again demonstrating that LIN28B knockdown led to
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Figure 3. LIN28B Positively Influences the Expression of RAN GTPase

(A) Quantitative RT-PCR demonstrating LIN28B and RAN mRNA levels in neuroblastoma cell lines. Asterisk indicates cell lines with regional 12q24 gain.

(B) Immunoblotting analysis of LIN28B and RAN protein levels in neuroblastoma cell lines, with actin as loading control.

(C) RAN activation assay showing levels of RAN-GTP in NGP/SKNSH and Kelly/NB16 cell line pairs with high and low levels, respectively, of both LIN28B and

RAN. Pulldowns were performed with RANBP1-bound agarose beads, followed by immunoblotting with anti-RAN antibody. RANBP1 immunoblot demonstrates

equal loading in the input used for pulldown.

(D–F) RT-PCR demonstratingRANmRNA levels in Kelly (D), NGP (E), and SKNDZ (F) neuroblastoma cell lines infectedwith lentiviruses encoding shRNAs directed

against LIN28B. shLIN28B-p designates pooled shRNAs directed against LIN28B. RAN mRNA levels are normalized to HPRT levels and are shown relative to

control. Immunoblots show expression of LIN28B and RAN, with actin as a loading control.

(G) RAN-GTP levels in the NGP cell line infected with control and shLIN28B-expressing lentiviruses. RANBP1 immunoblot demonstrates equal loading.

(H) Western blots for LIN28B and RAN expression in indicated cell lines infected with control and LIN28B-expressing lentiviruses, with Ku80 blots serving as

loading controls. Error bars represent SEM, with p values listed in individual panels.

See also Figure S3.
RAN knockdown (Figures S3B and S3C). Moreover, LIN28B

depletion decreased RAN-GTP levels (Figure 3G). To comple-

ment shRNA-mediated approaches, we expressed LIN28B in

five neuroblastoma cell lines with lower levels of LIN28B protein

and observed increases in RAN protein levels (Figure 3H).

Collectively, these experiments argue that LIN28B promotes

RAN expression.

LIN28B/let-7 Indirectly Regulates RAN Protein Levels
via RAN Binding Protein 2
Because themost well-characterized function of LIN28B is its in-

hibition of let-7 microRNA maturation, we considered the possi-

bility that RAN is a direct let-7 target. In both neuroblastoma cell

lines and primary tumors, LIN28B and let-7 expression are

inversely correlated (Diskin et al., 2012; Molenaar et al., 2012a)

and depletion of LIN28B leads to increased levels of let-7 family

members (Molenaar et al., 2012a), a finding that we further veri-
Ca
fied for let-7a and let-7i (Figure S4A). We transfected neuroblas-

toma cell lines with control and mature let-7a microRNA

mimetics, bypassing the inhibitory effect of LIN28B on let-7 pro-

cessing. Real-Time PCR verified significant let-7a overexpres-

sion (Figure 4A) and western blotting analysis demonstrated

that let-7a expression led to a decrease in RAN levels and over-

expression of let-7i similarly led to modest decreases in RAN

expression (Figures 4B and S4B). We examined the microRNA

target prediction databases Pictar (Krek et al., 2005), Targetscan

(Lewis et al., 2005), and MicroRNA.org (Betel et al., 2008), but

found no let-7 binding sites within RAN, arguing that RAN is

not a canonical let-7 target. We speculated that let-7 might be

indirectly influencing RAN expression, accounting for a more

subtle effect on RAN levels with robust let-7 overexpression.

RANBP2, a protein that directly binds RAN (Melchior et al.,

1995; Delphin et al., 1997; Yaseen and Blobel, 1999) and a

component of the RAN signaling pathway that is correlated
ncer Cell 28, 599–609, November 9, 2015 ª2015 Elsevier Inc. 603
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Figure 4. LIN28B/let-7 Indirectly Regulates

RAN Protein Levels via RANBP2

(A) RT-PCR demonstrating expression of let-7a in

Kelly and NGP neuroblastoma cell lines.

(B) Western blots demonstrating RAN protein

expression in control and let-7 expressing cell lines,

with Ku80 as loading control. ImageJ quantitation

demonstrates relative RAN protein expression of 0.37

in Kelly and 0.70 in NGP.

(C) Western blots demonstrating RANBP2 protein

expression in control and let-7 expressing cell lines,

with Ku80 immunoblots as loading control.

(D) Control microRNA and mature let-7a were trans-

fected into 293T cells and the effect on wild-type

RANBP2 30UTR and mutated RANBP2 (m-RANBP2)

30UTR activity was quantitated.

(E) Western blots demonstrating RAN and RANBP2

protein expression in control and RANBP2 depleted

cell lines (using pooled siRNAS) with Ku80 immuno-

blots as loading control. ImageJ quantitation dem-

onstrates relative RAN protein expression of 0.71 in

Kelly, 0.27 in NGP, and 0.49 in SKNDZ. Error bars

represent SEM.

See also Figure S4.
with LIN28B expression (Table S3), emerged as a possible

candidate mediating this influence, because it has two let-7

binding sites. Moreover, mice with conditional deletion of

Ranbp2 in their retinal pigmented epithelium develop retinal

degeneration and, importantly, demonstrate lower levels of

RAN protein but similar levels of Ran mRNA compared to wild-

type mice, arguing that one function of RANBP2 is to stabilize

RAN protein (Patil et al., 2014). Based on this finding, the pres-

ence of let-7 binding sites in RANBP2, and the binding of

RANBP2 to RAN, we hypothesized that LIN28B/let-7 regulates
604 Cancer Cell 28, 599–609, November 9, 2015 ª2015 Elsevier Inc.
RANBP2 expression, with RANBP2 in turn

stabilizing RAN protein levels.

We showed that depletion of LIN28B led

to decreased expression of RANBP2 (Fig-

ure S4C) and then evaluated the effect of

let-7 on RANBP2 levels, finding that let-7a

expression reduced RANBP2 protein levels

(Figure 4C). We then demonstrated that

RANBP2 is a direct let-7 target because

treatment with let-7a inhibited RANBP2

30UTR-driven luciferase activity (Figure 4D).

Additionally, mutation of the let-7 binding

sites in the RANBP2 30UTR inhibited

the ability of let-7 to decrease RANBP2

30UTR-driven luciferase activity, indicating

that LIN28B influences RANBP2 through

let-7. If RANBP2 promotes the stability of

RAN in neuroblastoma, as it does in the mu-

rine retina, then RANBP2 depletion should

result in decreased RAN protein expression.

Using pooled siRNAs directed against

RANBP2, we depleted RANBP2 in three

neuroblastoma cell lines, leading to reduc-

tion in RAN protein, quantified using ImageJ

(Figure 4E). Taken together, these investiga-
tions suggest that LIN28B promotes RANBP2 expression in a

let-7-dependent manner and that RANBP2 subsequently stabi-

lizes the RAN protein.

RAN Is a Direct RNA Target of LIN28B
In addition to inhibiting let-7, LIN28A and LIN28B bind mRNAs

directly, particularly at GGAG(A) and GAAG motifs and have

been shown to promote translation of mRNAs to which they

bind (Peng et al., 2011; Cho et al., 2012; Wilbert et al., 2012; Haf-

ner et al., 2013; Madison et al., 2013). RAN contains 8 GGAGA



A

C D

B

Figure 5. RAN Is a Direct RNA Target of LIN28B

(A–C) Quantitative RT-PCR analysis of RAN andCDKN1BmRNA levels in NGP

(A), SKNDZ (B), and SK-N-BE-2C (C) lysates containing LIN28B-RNA com-

plexes, immunoprecipitated with either anti- LIN28B antibody or control IgG.

Fold enrichment is relative to RNA precipitated with control IgG. Results are

representative of at least two independent experiments.

(D) Quantitative RT-PCR analysis of RAN mRNA levels in NB16 cell lines

infected with control and LIN28B-expressing lentiviruses, normalized to

CDKN1B binding. Results are representative of two independent experiments.

Error bars represent SEM.

See also Figure S5.
and 13 GGAG motifs, which led us to speculate that LIN28B

might directly bind RAN mRNA in neuroblastoma cells and to

perform RNA-binding protein immunoprecipitation assays (RIP;

(Keene et al., 2006) in neuroblastoma cell lines. We first immuno-

precipitated RNA-protein complexes with control IgG and

LIN28B antibody, along with antibodies directed against the

RNAbinding proteins EWSR1 and FXR1. Only RNA-protein com-

plexes immunoprecipitated with LIN28B antibody (and not those

immunoprecipitated with EWSR1 and FXR1 antibodies) were

significantly enriched for RAN, arguing for the specificity of

LIN28B binding to RAN mRNA (Figure S5A). We then immuno-

precipitated RNA-protein complexes in three neuroblastoma

cell lines and assayed LIN28B binding to RAN and to CDKN1B,

an mRNA not enriched by binding to LIN28B in neuroblastoma

cells. These studies (Figures 5A–5C) further demonstrated that

LIN28B protein specifically binds RAN mRNA. To complement

these approaches, we performed the RIP assay on two addi-

tional neuroblastoma cell lines, one with higher endogenous

LIN28B and RAN levels (Kelly), and one with lower endogenous

LIN28B and RAN levels (NB16; Figure S5B) and demonstrated

that cell lines with higher levels of LIN28B were enriched for

RAN binding. Finally, we examined the binding of LIN28B to

RAN mRNA in the NB16 cell line overexpressing LIN28B (as

shown in Figure 3H), demonstrating that cell lines engineered

to express higher levels of LIN28B and RAN were enriched for

RAN binding in comparison to control lines (Figure 5D). Collec-
Ca
tively, these data demonstrate that LIN28B binds to RAN

mRNA in neuroblastoma, possibly influencing RAN translation.

Asadditional evidence for thebindingof LIN28Bprotein toRAN

mRNA, we examined a ribonucleoprotein CLIP-Seq (cross-link-

ing, immunoprecipitation, and high-throughput sequencing)

dataset performed in human and murine colonic tissues and

cell lines and found evidence for LIN28B binding to RAN mRNA

in a colon cancer cell line (Madison et al., 2013). Together, these

datademonstrate adirect linkbetweenLIN28Boverexpression in

neuroblastoma cells and enhancedRANGTPase activity. Further

investigation is required to delineate the exact mechanisms by

which the binding of LIN28B tomRNAs influences the expression

of RAN and other target genes.

LIN28B and RAN Signaling Converge on AURKA
Wenext investigated the signaling networks downstream of both

LIN28B and RAN. RAN-GTP has been shown to induce phos-

phorylation of threonine 288 of AURKA (Tsai et al., 2003; Triesel-

mann et al., 2003), further increasing the enzymatic activity of

AURKA and allowing it to promote cell cycle progression.

Thus, we first confirmed that siRNA-mediated depletion of

RAN led to decreased phosphorylation at threonine 288 of

AURKA, with minimal changes in total levels of AURKA (Fig-

ure 6A), whereas overexpression of RAN led to an increase in

phosphorylated AURKA (Figure S6A).

As LIN28B promotes the expression of RAN GTPase, we pre-

dicted that LIN28B depletion would decrease RAN protein

expression, in turn decreasing phosphorylation at threonine

288. Surprisingly, pooled siRNA-mediated LIN28B knockdown

reduced not only the levels of phosphorylated AURKA, but also

total AURKA levels (Figure 6B). In addition, overexpression of

LIN28B resulted in increased AURKA expression in five neuro-

blastoma cell lines (Figure S6B). We speculated that AURKA

was a let-7 target and various microRNA target prediction pro-

grams (Krek et al., 2005; Lewis et al., 2005; Betel et al., 2008)

predicted AURKA to have one let-7 binding site in its 30UTR.
Overexpression of let-7a phenocopied the effects of LIN28B

depletion, reducing levels of both phosphorylated and total

AURKA (Figure 6C). To verify that AURKA is a direct let-7 target,

we performed 30UTR reporter assays, showing that treatment

with let-7a inhibited AURKA 30UTR-driven luciferase activity (Fig-
ure 6D). Mutation of the let-7 binding site in the AURKA 30UTR
relieved the inhibitory effect of let-7a, arguing that AURKA is a

direct let-7 target. Collectively, these experiments demonstrate

that LIN28B indirectly influences AURKA by promoting RAN

expression, and directly regulates AURKA through let-7.

In neuroblastoma, AURKA is being developed as a potential

therapeutic target (Maris et al., 2010; Mosse et al., 2012) as

AURKA has been shown to stabilize MYCN at the level of protein

and shRNA-mediated depletion has been shown to lead to

decreased cell proliferation in neuroblastoma (Otto et al., 2009;

Cole et al., 2011). Consistent with these data, we found that

depletion of AURKA reduced MYCN expression (Figure S6C).

In further support of the link between LIN28B and AURKA

signaling, expression of these two mRNAs is positively corre-

lated in primary neuroblastomas (Valentijn et al., 2012; Oberthuer

et al., 2010; Figures S6D–S6F) and high AURKA expression is

associated with reduced overall survival (Figure S6G), as

described (Otto et al., 2009).
ncer Cell 28, 599–609, November 9, 2015 ª2015 Elsevier Inc. 605



Kelly
Con       siRAN

NGP

RAN

Ku80

AURKA

Ku80

P-AURKA

NGP
Con      let-7a 

Kelly
Con     let-7a

AURKA

P-AURKA

Ku80

Ku80 AURKA AURKA mut
0

20

40

60

80
100

120 p <0.001                  p = 0.23

Kelly
Con   siLIN28B 

NGP
Con   siLIN28B 

P-AURKA

Ku80

LIN28B

AURKA

Ku80

R
el

at
iv

e 
lu

m
in

es
ce

nc
e

Con        siRAN

control
let-7a 

RAN

AURKA MYCN

RANBP2

LIN28B

RAN

AURKA

RANBP2

LIN28B

let-7

P P

LOW LIN28B HIGH LIN28B

HOMEOSTASIS MALIGNANT
PHENOTYPE

let-7

MYCN

A B

C

E

D

Figure 6. LIN28B and RAN Signaling Converge on AURKA

(A) Top images show immunoblots of AURKA phosphorylated at threonine 88

(designated P-AURKA) in control and RAN-depleted (with pooled siRNAs) cell

lines, treated with nocodazole to enrich for G2/M phase; Ku80 was used as the

loading control. Bottom panels show Western blotting analysis of RAN and

total AURKA in control and RAN-depleted cell lines, with Ku80 as the loading

control.

(B) Top images show immunoblots of P-AURKA in control and LIN28B-

depleted cell lines (using pooled siRNAs), treated with nocodazole. Bottom

panels showWestern blotting analysis of LIN28B, AURKA, and Ku80 in control

and LIN28B-depleted Kelly and NGP cell lines.

(C) Top images show immunoblots of P-AURKA in control and let-7 expressing

cell lines, treated with nocodazole. Bottom panels show western blotting

analysis of AURKA and Ku80 in control and let-7 expressing cell lines.

(D) 30UTR assays showing the effect of let-7 upon AURKA expression. Control

microRNA andmature let-7a were transfected into 293T cells and the effect on

wild-type AURKA 30UTR and mutated AURKA 30UTR activity was quantitated.

(E) Model depicting a proposed LIN28B-RAN-AURKA-MYCN signaling

network and its role in driving neuroblastoma tumorigenesis. Error bars

represent SEM.

See also Figure S6.
DISCUSSION

This work was motivated by the co-discovery of LIN28B as a

neuroblastoma susceptibility gene (Diskin et al., 2012) and the

demonstration that ectopic LIN28B expression in the developing
606 Cancer Cell 28, 599–609, November 9, 2015 ª2015 Elsevier Inc.
murine sympathetic nervous system causes neuroblastoma, in

part through enhancing MYCN expression (Molenaar et al.,

2012a). We propose a central regulatory role for LIN28B in neu-

roblastoma, influencing both RAN and AURKA signaling.

We demonstrate RAN to be a key downstream component of

LIN28B signaling, with RAN depletion decreasing cell prolifera-

tion and restoration of RAN levels helping to counter the

decreased proliferation seen with LIN28B knockdown. In sup-

port of a broader oncogenic role, RAN, a member of the RAS

superfamily of GTPases, is overexpressed in multiple malig-

nancies, including pancreatic adenocarcinoma (Deng et al.,

2013), glioblastoma multiforme (Guvenc et al., 2013), ovarian

cancer (Barrès et al., 2010), and renal cell carcinoma (Abe

et al., 2008). While the cycling between RAN-GTP and RAN-

GDP clearly regulates RAN function, our work defines another

mechanism influencing RAN levels, revealing that LIN28B in-

creases RAN mRNA and protein levels. Similarly, mir-203 was

shown to function as a tumor suppressor in esophageal cancer,

in part via downregulating RAN mRNA and protein (Zhang et al.,

2014). Highlighting the critical relationship between LIN28 and

let-7, we demonstrate that RANBP2 is a let-7 target and show

that RANBP2 helps stabilize RAN protein levels, though further

investigation is needed to define how the RANBP2-RAN interac-

tion promotes RAN stability. We also demonstrate that LIN28B

directly binds RAN mRNA, illustrating a second mechanism by

which LIN28B promotes RAN expression and consistent with

previous reports showing that the LIN28 family binds mRNAs

(Peng et al., 2011; Cho et al., 2012; Wilbert et al., 2012; Hafner

et al., 2013; Madison et al., 2013).

The influence of LIN28B on RAN expression is most striking

within MYCN-amplified tumors, consistent with our previous

study identifying the correlation of LIN28B and MYCN expres-

sion (Diskin et al., 2012) and the observation that LIN28B directly

promotes MYCN expression (Molenaar et al., 2012a). However,

we also identify regional gain of chromosome 12q24 as an addi-

tional factor mediating increased RAN expression, most notably

in the non-MYCN amplified subset of neuroblastoma, which

generally expresses low levels of LIN28B. We speculate that,

in the absence of higher levels of LIN28B expression, chromo-

some 12q24 regional gain might provide one alternate means

of increasing RAN expression.

Our studies reveal a convergence of LIN28B and RAN signaling

on AURKA. AURKA plays a crucial role in multiple malignancies,

including neuroblastoma, where targeted inhibition is broadly

cytotoxic (Maris, 2010). Whereas AURKA stabilizes the MYCN

protein (Otto et al., 2009), the mechanisms for AURKA activation

in neuroblastomahave not beenpreviously defined.Our data sug-

gest a possible mechanism for hyperactivation and thus identify a

potential biomarker for drug sensitivity. In addition, Aurora kinase

Bhasbeen implicated inneuroblastoma tumorigenesis (Morozova

et al., 2010) and has been shown to be a let-7 target in germ cell

tumors (Murray et al., 2013), but will require further investigation

to establish a functional relationship with LIN28B expression.

These studies delineate a LIN28B-orchestrated signaling

network (Figure 6E). LIN28B regulates RANBP2 levels and

directly binds toRANmRNA, providing indirect and direct mech-

anisms, respectively, of promoting RAN expression. Consistent

with previous studies, RAN promotes the phosphorylation and

activation of AURKA (Tsai et al., 2003; Trieselmann et al.,



2003). Additionally, LIN28B promotes AURKA expression

directly via inhibition of let-7. AURKA serves as a point of conver-

gence of LIN28B-RAN signaling, further driving cell cycle pro-

gression by phosphorylating a number of cell cycle regulators

and stabilizing MYCN protein (Otto et al., 2009), which is itself

a LIN28B/let-7 target (Molenaar et al., 2012a). This interplay

among LIN28B, RAN, AURKA, and MYCN illustrates the

complexity of LIN28B signaling in driving neuroblastoma tumor-

igenesis but also raises the possibility that combined targeting of

these pathways may represent therapeutic opportunities in

neuroblastoma. Although there are no direct RAN inhibitors, in-

hibitors directed against XPO1/CRM1, a protein that directly

interacts with RAN to promote nuclear export and that is corre-

lated with LIN28B expression, have shown efficacy against

both liquid and solid malignancies (Nguyen et al., 2012). AURKA

inhibitors have demonstrated therapeutic effect against solid tu-

mors in preclinical modeling and are in Phase 2 trials in combina-

tion with chemotherapy for neuroblastoma (Mosse et al., 2012).

Bromodomain and extraterminal (BET) inhibitors targeting the

MYC family, including MYCN, have demonstrated efficacy in

preclinical models of neuroblastoma (Puissant et al., 2013;

Wyce et al., 2013), with clinical trials in development. Finally,

let-7 has been proposed as a potential therapy in a number of

cancers and was recently shown to reduce LIN28B-driven tu-

mors in murine models of liver cancer (Nguyen et al., 2014).

This work should allow investigators to develop responder hy-

potheses and possible drug combinations based on the bio-

markers defined in this LIN28B-orchestrated signaling network.

EXPERIMENTAL PROCEDURES

Neuroblastoma Patient Datasets

All tumor and matched blood samples used in this study were from subjects

enrolled on theChildren’sOncologyGroup (COG) NeuroblastomaBiology Pro-

tocol ANBL00B1, with informed consent obtained by treating physicians at

each COG institution. De-identified nucleic acids were shipped to the Chil-

dren’s Hospital of Philadelphia for study after COG and Cancer Therapy Eval-

uation Program (CTEP) scientific review and approval. The Children’s Hospital

of Philadelphia Institutional Review Board agreed with our determination that

this research is considered exempt from the human subject research regula-

tory requirements in the Code of Federal Regulations. Further details regarding

datasets are provided in the Supplemental Experimental Procedures.

The tumor genomics data are available through the Therapeutically Appli-

cable Research to Generate Effective Treatments (TARGET) data matrix portal

(http://target.nci.nih.gov/dataMatrix/TARGET_DataMatrix.html).

Cell Culture

Neuroblastoma cell lines were passaged in RPMI-containingmedia; 293T cells

were grown in DMEMsupplemented similarly. To enrich for cells in G2/M, Kelly,

NGP, and NB16 cells were treated with 100, 200, and 300 ng/ml nocodazole,

respectively, for 24 hr.

Real-Time PCR Analysis

Experiments were performed with standard methodology and are detailed in

the Supplemental Experimental Procedures.

Western Blotting

Immunoblotting was performed with standard methods, further detailed in the

Supplemental Experimental Procedures.

RAN Activation Assays

Assays were performed using the RAN Activation Assay kit (Cell Biolabs).

Briefly, 750 mg of lysates was incubated for one hour at 4�C with agarose
Ca
beads conjugated to RANBP1, which specifically binds RAN-GTP and not

RAN-GDP. Beads were pelleted, washed, and resuspended in SDS-PAGE

buffer, followed by immunoblotting with an anti-RAN antibody.

Lentiviral Preparation and Transduction

Lentiviral preparation was carried out as described (Liu et al., 2013) and further

outlined in the Supplemental Experimental Procedures.

RNA Immunoprecipitation Assays

RNA immunoprecipitation assays were performed using the MagnaRIP RNA

Binding Protein Immunoprecipitation kit (Millipore). RNA levels were quantified

by RT-PCR.

30UTR Luciferase Reporter Assays

Assays were conducted on 293T cells using the Lightswitch Luciferase Assay

System (Switchgear Genomics). Briefly, cells were transfected, incubated for

24 hr, and then harvested for luciferase assays as per the manufacturer’s in-

structions. Further experimental details are outlined in the Supplemental

Experimental Procedures.

Cell Proliferation Assays

To determine the effect of transient RAN knockdown on cell proliferation, the

RT-CES system, as described (Diskin et al., 2012), was used, and cell viability

was measured using CellTiter-Glo Cell viability assays (Promega) following the

manufacturer’s protocol, with further details described in the Supplemental

Experimental Procedures.

Statistical Analyses

Statistical analyses were performed using Microsoft Excel and the R program-

ming language, unpaired Student’s t test. Statistical methodology for gene

expression profiling and GISTIC analyses is described in the Supplemental

Experimental Procedures. ImageJ software was used for quantitation of select

immunoblots.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and five tables and can be found with this article online at http://

dx.doi.org/10.1016/j.ccell.2015.09.012.
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